问题
Why is nullable = true used after some functions are executed even though there are no NaN values in the DataFrame.
val myDf = Seq((2,"A"),(2,"B"),(1,"C"))
.toDF("foo","bar")
.withColumn("foo", 'foo.cast("Int"))
myDf.withColumn("foo_2", when($"foo" === 2 , 1).otherwise(0)).select("foo", "foo_2").show
When df.printSchema is called now nullable will be false for both columns.
val foo: (Int => String) = (t: Int) => {
fooMap.get(t) match {
case Some(tt) => tt
case None => "notFound"
}
}
val fooMap = Map(
1 -> "small",
2 -> "big"
)
val fooUDF = udf(foo)
myDf
.withColumn("foo", fooUDF(col("foo")))
.withColumn("foo_2", when($"foo" === 2 , 1).otherwise(0)).select("foo", "foo_2")
.select("foo", "foo_2")
.printSchema
However now, nullable is true for at least one column which was false before. How can this be explained?
回答1:
When creating Dataset from statically typed structure (without depending on schema argument) Spark uses a relatively simple set of rules to determine nullable property.
- If object of the given type can be
nullthen itsDataFramerepresentation isnullable. - If object is an
Option[_]then then itsDataFramerepresentation isnullablewithNoneconsidered to be SQLNULL. - In any other case it will be marked as not
nullable.
Since Scala String is java.lang.String, which can be null, generated column can is nullable. For the same reason bar column is nullable in the initial dataset:
val data1 = Seq[(Int, String)]((2, "A"), (2, "B"), (1, "C"))
val df1 = data1.toDF("foo", "bar")
df1.schema("bar").nullable
Boolean = true
but foo is not (scala.Int cannot be null).
df1.schema("foo").nullable
Boolean = false
If we change data definition to:
val data2 = Seq[(Integer, String)]((2, "A"), (2, "B"), (1, "C"))
foo will be nullable (Integer is java.lang.Integer and boxed integer can be null):
data2.toDF("foo", "bar").schema("foo").nullable
Boolean = true
See also: SPARK-20668 Modify ScalaUDF to handle nullability.
回答2:
You could change schema of dataframe very quickly as well. something like this would do the job -
def setNullableStateForAllColumns( df: DataFrame, columnMap: Map[String, Boolean]) : DataFrame = {
import org.apache.spark.sql.types.{StructField, StructType}
// get schema
val schema = df.schema
val newSchema = StructType(schema.map {
case StructField( c, d, n, m) =>
StructField( c, d, columnMap.getOrElse(c, default = n), m)
})
// apply new schema
df.sqlContext.createDataFrame( df.rdd, newSchema )
}
来源:https://stackoverflow.com/questions/40603756/why-do-columns-change-to-nullable-in-apache-spark-sql