题面
解析
翻译一下题意:给定n个字符串,求最长的字符串 S 的长度,使得 S 至少为其中 n/2+1 个字符串的子串, 并输出所有的S,若不存在,则输出'?'。(n<=100)
此题与POJ3261类似(我的博客),都是相同套路,后缀数组+二分答案
当然是把每个字符串连在一起,组成一个大的字符串,再在上面建立后缀数组。但是这里有个细节,搞了我很久,为了防止我们选出的子串跨越了原来的多个字符串,需要在每个字符串中间加入不同的不会出现的字符,这样就解决了这个问题。
check的时候需要维护每个块内的$lcp$出现在多少个原来的字符串中,开一个$bool$型的$vis$数组存原字符串是否在当前块内出现,再开一个$pos$数组存长字符串的下标所属的原字符串编号,对于字符串间加入的字符的$pos$等于0, 而$vis[0]$应永远等于$true$,不能对答案产生贡献
代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 105, maxm = 1005;
int n, len, cur, timer, pos[maxn*maxm], s[maxn*maxm];
char c[maxm];
int sa[maxn*maxm], rk[maxn*maxm], tong[maxn*maxm], fir[maxn*maxm], sec[maxn*maxm], hei[maxn*maxm];
void Build_SA()
{
int m = 150;
for(int i = 1; i <= len; ++i)
fir[i] = s[i];
for(int i = 0; i <= m; ++i)
tong[i] = 0;
for(int i = 1; i <= len; ++i)
tong[fir[i]] ++;
for(int i = 1; i <= m; ++i)
tong[i] += tong[i-1];
for(int i = len; i; --i)
sa[tong[fir[i]]--] = i;
for(int k = 1; k <= len; k <<= 1)
{
int t = 0;
for(int i = len - k + 1; i <= len; ++i)
sec[++t] = i;
for(int i = 1; i <= len; ++i)
if(sa[i] - k > 0)
sec[++t] = sa[i] - k;
for(int i = 0; i <= m; ++i)
tong[i] = 0;
for(int i = 1; i <= len; ++i)
tong[fir[sec[i]]] ++;
for(int i = 1; i <= m; ++i)
tong[i] += tong[i-1];
for(int i = len; i; --i)
sa[tong[fir[sec[i]]]--] = sec[i], sec[i] = 0;
swap(fir, sec);
t = 0;
fir[sa[1]] = ++t;
for(int i = 2; i <= len; ++i)
if(sec[sa[i]] != sec[sa[i-1]] || sec[sa[i]+k] != sec[sa[i-1]+k])
fir[sa[i]] = ++t;
else
fir[sa[i]] = t;
if(t >= len)
break;
m = t;
}
}
void Get_hei()
{
int h = 0;
for(int i = 1; i <= len; ++i)
rk[sa[i]] = i;
for(int i = 1; i <= len ;++i)
{
int t = sa[rk[i]-1];
while(s[t+h] == s[i+h]) h++;
hei[rk[i]] = h;
h = max(0, h-1);
}
}
bool vis[maxn];
bool check(int x)
{
for(int i = 1; i <= n; ++i)
vis[i] = 0;
int p = 1, num = 1;
vis[0] = 1;
vis[pos[sa[1]]] = 1;
for(int i = 2; i <= len; ++i)
{
if(hei[i] < x)
{
if(num > n / 2)
return 1;
for(int j = p; j < i; ++j)
vis[pos[sa[j]]] = 0;
vis[0] = 1;
p = i;
num = 0;
}
if(!vis[pos[sa[i]]])
num ++, vis[pos[sa[i]]] = 1;
}
return num > n / 2;
}
void write(int x)
{
for(int i = 1; i <= n; ++i)
vis[i] = 0;
int p = 1, num = 1;
vis[0] = 1;
vis[pos[sa[1]]] = 1;
for(int i = 2; i <= len; ++i)
{
if(hei[i] < x)
{
if(num > n / 2)
{
int cnt = 0, j = sa[i-1];
while(cnt < x)
{
if(pos[j] != 0)
printf("%c", s[j]-maxn+'a'), cnt++;
j++;
}
printf("\n");
}
for(int j = p; j < i; ++j)
vis[pos[sa[j]]] = 0;
vis[0] = 1;
p = i;
num = 0;
}
if(!vis[pos[sa[i]]])
num ++, vis[pos[sa[i]]] = 1;
}
if(num > n / 2)
{
int cnt = 0, j = sa[len];
while(cnt < x)
{
if(pos[j] != 0)
printf("%c", s[j]-maxn+'a'), cnt++;
j++;
}
printf("\n");
}
}
void work()
{
int l = 0, r = len, mid, ans = 0;
while(l <= r)
{
mid = (l + r)>>1;
if(check(mid))
ans = mid, l = mid + 1;
else
r = mid - 1;
}
if(ans)
write(ans);
else
printf("?\n");
}
int main()
{
while(scanf("%d", &n), n != 0)
{
if(cur++)
printf("\n");
len = timer = 0;
for(int i = 1; i <= n; ++i)
{
scanf("%s", c);
int l = strlen(c);
for(int j = 0; j < l; ++j)
s[++len] = c[j] - 'a' + maxn, pos[len] = i;
s[++len] = ++timer;
pos[len] = 0;
}
if(n == 1)
{
for(int i = 1; i < len; ++i)
printf("%c", s[i]-maxn+'a');
printf("\n");
}
else
{
Build_SA();
Get_hei();
work();
}
}
return 0;
}
来源:https://www.cnblogs.com/Joker-Yza/p/11342623.html
