Tensorflow之RNN,LSTM
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
tensorflow之RNN
循环神经网络做手写数据集分类
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#设置随机数来比较两种计算结果
tf.set_random_seed(1)
#导入手写数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
#设置参数
lr = 0.001
training_iters = 100000
batch_size = 128
n_inputs = 28 # MNIST 输入为图片(img shape: 28*28)对应到图片像素的一行
n_steps = 28 # time steps 对应到图片有多少列
n_hidden_units = 128 # 隐藏层神经元个数
n_classes = 10 # MNIST分类结果为10
#定义权重
weights = {
#(28,128)
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units]))
#(128,10)
'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
#定义bias
biases = {
# (128, )
'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
# (10, )
'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}
def RNN(X, weights, biases):
#作为cell输入的隐藏层
######################################################
#输入层
#将输入shape从X三维输入变为二维(128 batch * 28 steps, 128 hidden)
X = tf.reshape(X, [-1,n_inputs])
#隐藏层
# X_in = (128 batch * 28 steps, 128 hidden)
X_in = tf.matmul(X, weights['in']) + biases['in']
# 传给cell时需要将二维转为三维X_in ==> (128 batch, 28 steps, 128 hidden)
X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
#cell
#######################################################
#LSTM cell forget_bias=1.0表示最开始学习我们不希望忘掉任何state, #state_is_tuple=True这个为true表示记录每个时间点的cell状态和输出值,以后会默认为true
cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units,forget_bias=1.0,state_is_tuple=True)
#将lstm cell 分成两部分(c_state, h_state),对应到lstm一个是主线c_state(没有cell的遗忘), #支线是h_state(有cell的遗忘),zero_state将每个t时间的cell初始化为0,
init_state = cell.zero_state(batch_size, dtype=tf.float32)
#outputs为lstm所有输出结果包括每个时刻cell的state,和输出值,final_state为最后的结果, #time_major参数表示时间序列的位置是否为输入数据的第一个维度,由于我们是在第二个维度,所以为false
outputs, final_state = tf.nn.dynamic_rnn(cell, X_in, initial_state=init_state, time_major=False)
#1.将隐藏层的输出作为最后结果,只有一个结果
#results = tf.matmul(final_state[1], weights['out']) + biases['out']
#2.将每一步的结果输出到lists,在对outputs unstack后[1,0, 2]是将outputs list中每个tuple中元素对应展开
tf.unstack(tf.transpose(outputs, [1, 0, 2]))
results = tf.matmul(outputs[-1], weights['out']) + biases['out'] # shape = (128, 10)
return results
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
step = 0
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
sess.run([train_op], feed_dict={
x: batch_xs,
y: batch_ys,
})
if step % 20 == 0:
print(sess.run(accuracy, feed_dict={
x: batch_xs,
y: batch_ys,
}))
step += 1
来源:https://www.cnblogs.com/xmeo/p/7230723.html