问题
I am trying to implement this paper (the model architecture is given below) and have two models- coarse_model and fine_model which need to be concatenated at the second step of the fine model. However, I am getting an error when I trying to concatenate using the last axis.
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense, Merge
from keras.layers.core import Reshape
from keras.layers.merge import Concatenate
from keras import backend as K
# dimensions of our images
#img_width, img_height = 320, 240
img_width, img_height = 304,228
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
# coarse model
coarse_model = Sequential()
# coarse layer 1
coarse_model.add(Conv2D(96,(11,11),strides=(4,4),input_shape=input_shape,activation='relu'))
coarse_model.add(MaxPooling2D(pool_size=(2, 2)))
# coarse layer 2
coarse_model.add(Conv2D(256,(5,5),activation='relu',padding='same'))
coarse_model.add(MaxPooling2D(pool_size=(2, 2)))
# coarse layer 3
coarse_model.add(Conv2D(384,(3,3),activation='relu',padding='same'))
# coarse layer 4
coarse_model.add(Conv2D(384,(3,3),activation='relu',padding='same'))
# coarse layer 5
coarse_model.add(Conv2D(256,(3,3),activation='relu',padding='same'))
coarse_model.add(Flatten())
# coarse layer 6
coarse_model.add(Dense(4096,activation='relu'))
# coarse layer 7
coarse_model.add(Dense(4070,activation='linear'))
# fine model
fine_model = Sequential()
fine_model.add(Conv2D(63,(9,9),strides=(2,2),input_shape=input_shape,activation='relu'))
fine_model.add(MaxPooling2D(pool_size=(2, 2)))
# reshape coarse model to shape of fine model
shape = fine_model.layers[1].output_shape
shape_subset = (shape[1],shape[2])
coarse_model.add(Reshape(shape_subset))
model = Sequential()
model.add(Merge([coarse_model.layers[10],fine_model.layers[1]],mode='concat',concat_axis=3))
The error given on the last line is: *** ValueError: "concat" mode can only merge layers with matching output shapes except for the concat axis. Layer shapes: [(None, 74, 55), (None, 74, 55, 63)]
回答1:
To answer my own question, changing the shape to
shape_subset = (shape[1],shape[2],1)
and
model.add(Merge([coarse_model.layers[10],fine_model.layers[1]],mode='concat',concat_axis=-1))
makes the code work.
来源:https://stackoverflow.com/questions/44787050/merge-layers-concatenate-in-keras