问题
I have a heavy Cython function that I'm trying to optimize. I am profiling per this following tutorial http://docs.cython.org/src/tutorial/profiling_tutorial.html. My profile output looks like this:
ncalls tottime percall cumtime percall filename:lineno(function)
1 7.521 7.521 18.945 18.945 routing_cython_core.pyx:674(resolve_flat_regions_for_drainage)
6189250 4.964 0.000 4.964 0.000 stringsource:323(__cinit__)
6189250 2.978 0.000 7.942 0.000 stringsource:618(memoryview_cwrapper)
6009849 0.868 0.000 0.868 0.000 routing_cython_core.pyx:630(_is_flat)
6189250 0.838 0.000 0.838 0.000 stringsource:345(__dealloc__)
6189250 0.527 0.000 0.527 0.000 stringsource:624(memoryview_check)
1804189 0.507 0.000 0.683 0.000 routing_cython_core.pyx:646(_is_sink)
15141 0.378 0.000 0.378 0.000 {_gdal_array.BandRasterIONumPy}
3 0.066 0.022 0.086 0.029 /home/rpsharp/local/workspace/invest-natcap.invest-3/invest_natcap/raster_utils.py:235(new_raster_from_base_uri)
11763 0.048 0.000 0.395 0.000 /usr/lib/python2.7/dist-packages/osgeo/gdal_array.py:189(BandReadAsArray)
Specifically I'm interested in lines 2 and 3 that call stringsource:323(__cinit__)
and stringsource:618(memoryview_cwrapper)
many times. A Google turned up references to memory views which I'm not using in that function, although I am statically typing numpy arrays. Any idea what these calls are and if I can avoid/optimize them?
回答1:
Okay, turns out I did have a memory view. I was calling an inline function that passed a statically typed numpy array to a memory view, thus invoking all those extra calls to stringsource. Replacing the memoryview type in the function call with a numpy type fixed this.
来源:https://stackoverflow.com/questions/21056696/when-profiling-cython-code-what-is-stringsource