windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,
在A和B之间,包括A和B,总共有多少个windy数?
Input
包含两个整数,A B。
Output
一个整数
Sample Input
【输入样例一】
1 10
【输入样例二】
25 50
Sample Output
【输出样例一】
9
【输出样例二】
20
Hint
【数据规模和约定】
100%的数据,满足 1 <= A <= B <= 2000000000 。
借此题讲一下数位dp的几个关键;
0,注意构造dp的转移方程,这也是题目的突破口
1,数据是否前后包括 (100%的数据: solve(m+1)-(n));
2,注意数位判断的顺序,(x00000以下的个数->x00000~xy0000的个数->xy0000~xyz000的个数......: for(int i=len;i>0;i--)for(int j=0;j<a[i];j++))
3,根据题目首位是否需要特判(此题条件相邻二数差至少为2,故首位没有前导零与之相差,需要特判:即清加所有小于x00000的数)
4,特变注意数位改变节点的判断,如无必要,之后的都无需判断(if(abs(a[i]-a[i+1])<2)break;)
#include<cstdio>
#include<cstring>
using namespace std;
int dp[20][20];
int abs(int x){
if(x<0)return -x;
return x;
}
void dpin(){
memset(dp,0,sizeof(dp));
for(int i=0;i<=9;i++)dp[1][i]=1;
for(int i=2;i<=12;i++)
for(int j=0;j<10;j++)
for(int k=0;k<10;k++)
if(abs(j-k)>=2)dp[i][j]+=dp[i-1][k];
//printf("2 1 %d\n",dp[2][1]);
return;
}
int solve(int x){
int len=0,a[15],ans=0;
while(x) {
a[++len]=x%10;
x/=10;
}
// 判断所小于最高位次的数字(前导0特判
for(int i=1;i<len;i++)
for(int j=1;j<10;j++)
ans+=dp[i][j]; //printf("1 %d\n",ans);
// 最高位次下最高位 (前导0特判
for(int i=1;i<a[len];i++)ans+=dp[len][i];// printf("2 %d\n",ans);
// 低位次统计
a[len+1]=-1;
for(int i=len-1;i>0;i--){
for(int j=0;j<a[i];j++)
if(abs(j-a[i+1])>=2)ans+=dp[i][j];//printf("3 %d\n",ans);
//printf("%d %d %d\n",a[i],a[i+1],i);
if(abs(a[i]-a[i+1])<2)break; //如果该高位次的数字本身不符合,再往后也没判断的必要了
} //printf("3 %d\n",ans);
//printf("%d\n",ans);
return ans;
}
int main(){
dpin();
int m,n;
scanf("%d%d",&m,&n);
printf("%d\n",solve(n+1)-solve(m));
return 0;
}
来源:https://www.cnblogs.com/-ifrush/p/10329312.html