MT【348】反函数图像解题

天大地大妈咪最大 提交于 2019-11-27 08:35:50

设实数$\lambda >0$,若对任意的$x\in(e^2,+\infty)$,不等式$\lambda e^{\lambda x}-\ln x>0$恒成立,则$\lambda$的最小值为_____


提示:反函数,由题意$e^{\lambda x}\ge \dfrac{\ln x}{\lambda}$,注意到$y=e^{\lambda x}$与$y=\dfrac{\ln x}{\lambda}$ 是互为反函数.

求$y=x$与$y=e^{\lambda x}$的切点易得为$(e,e)$此时$\lambda=\dfrac{1}{e}$.由于$x\in (e^2,+\infty)$结合图像知$\lambda\ge\dfrac{2}{e^2}$
注:若条件改为$x>0$时恒成立,则$\lambda\ge \dfrac{1}{e}$.此时$e^{\lambda x}\ge e^{\dfrac{1}{e}x}\ge x$.
(这一步用到了常见不等式$e^x=e*e^{x-1}\ge ex$)
由反函数图像知道此时$e^{\lambda x}\ge \dfrac{\ln x}{\lambda}$成立.

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!