问题
I'm trying to create nested JSON object by combining more than one relational tables using python/pandas. I'm a beginner in Python/pandas, so looking for bit of a help here...
In the following example, instead of tables, I'm using CSV files just to keep it simple
Table1.csv
Emp_id, Gender, Age
1, M, 32
2, M, 35
3, F, 31Table2.csv
Emp_id, Month, Incentive
1, Aug, 3000
1, Sep, 3500
1, Oct, 2000
2, Aug, 1500
3, Aug, 5000
3, Sep, 2400
I want to create a JSON object like below
*Required output:
{
"data": [{
"employee": 1,
"gender": M,
"age": 32,
"incentive": [{
"aug": 3000,
"sep": 3500,
"oct": 2000
}],
"employee": 2,
"gender": M,
"age": 35,
"incentive": [{
"aug": 1500
}],
"employee": 3,
"gender": F,
"age": 31,
"incentive": [{
"aug": 5000,
"sep": 2400
}]
}]
}
回答1:
Use merge with left join first, then groupby with lambda function for dictionaries and convert to_dict, last add top key
value and convert to json
:
d = (df1.merge(df2, on='Emp_id', how='left')
.groupby(['Emp_id','Gender','Age'])['Month','Incentive']
.apply(lambda x: [dict(x.values)])
.reset_index(name='Incentive')
.to_dict(orient='records')
)
#print (d)
import json
json = json.dumps({'data':d})
print (json)
{
"data": [{
"Emp_id": 1,
"Gender": "M",
"Age": 32,
"Incentive": [{
"Aug": 3000,
"Sep": 3500,
"Oct": 2000
}]
}, {
"Emp_id": 2,
"Gender": "M",
"Age": 35,
"Incentive": [{
"Aug": 1500
}]
}, {
"Emp_id": 3,
"Gender": "F",
"Age": 31,
"Incentive": [{
"Aug": 5000,
"Sep": 2400
}]
}]
}
来源:https://stackoverflow.com/questions/53520719/multiple-relational-tables-to-nested-json-format-using-python