问题
I would like to do a cartesian product of two PCollections. Neither PCollection can fit into memory, so doing side input is not feasible.
My goal is this: I have two datasets. One is many elements of small size. The other is few (~10) of very large size. I would like to take the product of these two elements and then produce key-value objects.
回答1:
I think CoGroupByKey might work in your situation:
https://cloud.google.com/dataflow/model/group-by-key#join
That's what I did for a similar use-case. Though mine had probably not been constrained by the memory (have you tried a larger cluster with bigger machines?):
PCollection<KV<String, TableRow>> inputClassifiedKeyed = inputClassified
.apply(ParDo.named("Actuals : Keys").of(new ActualsRowToKeyedRow()));
PCollection<KV<String, Iterable<Map<String, String>>>> groupedCategories = p
[...]
.apply(GroupByKey.create());
So the collections are keyed by the same key.
Then I declared the Tags:
final TupleTag<Iterable<Map<String, String>>> categoryTag = new TupleTag<>();
final TupleTag<TableRow> actualsTag = new TupleTag<>();
Combined them:
PCollection<KV<String, CoGbkResult>> actualCategoriesCombined =
KeyedPCollectionTuple.of(actualsTag, inputClassifiedKeyed)
.and(categoryTag, groupedCategories)
.apply(CoGroupByKey.create());
And in my case the final step - reformatting the results (from the tagged groups in the continuous flow:
actualCategoriesCombined
.apply(
ParDo.named("Actuals : Formatting")
.of(
new DoFn<KV<String, CoGbkResult>, TableRow>() {
@Override
public void processElement(ProcessContext c) throws Exception {
KV<String, CoGbkResult> e = c.element();
Iterable<TableRow> actualTableRows = e.getValue().getAll(actualsTag);
Iterable<Iterable<Map<String, String>>> categoriesAll = e.getValue().getAll(categoryTag);
for (TableRow row : actualTableRows) {
// Some of the actuals do not have categories
if (categoriesAll.iterator().hasNext()) {
row.put("advertiser", categoriesAll.iterator().next());
}
c.output(row);
}
}
}
)
)
Hope this helps. Again - not sure about the in memory constraints. Please do tell the results if you try this approach.
回答2:
to create cartesian product use Apache Beam extension Join
import org.apache.beam.sdk.extensions.joinlibrary.Join;
...
// Use function Join.fullOuterJoin(final PCollection<KV<K, V1>> leftCollection, final PCollection<KV<K, V2>> rightCollection, final V1 leftNullValue, final V2 rightNullValue)
// and the same key for all rows to create cartesian product as it is shown below:
public static void process(Pipeline pipeline, DataInputOptions options) {
PCollection<KV<Integer, CpuItem>> cpuList = pipeline
.apply("ReadCPUs", TextIO.read().from(options.getInputCpuFile()))
.apply("Creating Cpu Objects", new CpuItem()).apply("Preprocess Cpu",
MapElements
.into(TypeDescriptors.kvs(TypeDescriptors.integers(), TypeDescriptor.of(CpuItem.class)))
.via((CpuItem e) -> KV.of(0, e)));
PCollection<KV<Integer, GpuItem>> gpuList = pipeline
.apply("ReadGPUs", TextIO.read().from(options.getInputGpuFile()))
.apply("Creating Gpu Objects", new GpuItem()).apply("Preprocess Gpu",
MapElements
.into(TypeDescriptors.kvs(TypeDescriptors.integers(), TypeDescriptor.of(GpuItem.class)))
.via((GpuItem e) -> KV.of(0, e)));
PCollection<KV<Integer,KV<CpuItem,GpuItem>>> cartesianProduct = Join.fullOuterJoin(cpuList, gpuList, new CpuItem(), new GpuItem());
PCollection<String> finalResultCollection = cartesianProduct.apply("Format results", MapElements.into(TypeDescriptors.strings())
.via((KV<Integer, KV<CpuItem,GpuItem>> e) -> e.getValue().toString()));
finalResultCollection.apply("Output the results",
TextIO.write().to("fps.batchproc\\parsed_cpus").withSuffix(".log"));
pipeline.run();
}
in the code above in this line
...
.via((CpuItem e) -> KV.of(0, e)));
...
i create Map with key equals to 0 for all rows available in the input data. As the result all rows are matched. That is equal to SQL expression JOIN without WHERE clause
来源:https://stackoverflow.com/questions/41050477/how-to-do-a-cartesian-product-of-two-pcollections-in-dataflow