dask dataframe apply meta

守給你的承諾、 提交于 2019-12-23 07:04:36

问题


I'm wanting to do a frequency count on a single column of a dask dataframe. The code works, but I get an warning complaining that meta is not defined. If I try to define meta I get an error AttributeError: 'DataFrame' object has no attribute 'name'. For this particular use case it doesn't look like I need to define meta but I'd like to know how to do that for future reference.

Dummy dataframe and the column frequencies

import pandas as pd
from dask import dataframe as dd

df = pd.DataFrame([['Sam', 'Alex', 'David', 'Sarah', 'Alice', 'Sam', 'Anna'],
                   ['Sam', 'David', 'David', 'Alice', 'Sam', 'Alice', 'Sam'],
                   [12, 10, 15, 23, 18, 20, 26]],
                  index=['Column A', 'Column B', 'Column C']).T
dask_df = dd.from_pandas(df)

In [39]: dask_df.head()
Out[39]: 
  Column A Column B Column C
0      Sam      Sam       12
1     Alex    David       10
2    David    David       15
3    Sarah    Alice       23
4    Alice      Sam       18

(dask_df.groupby('Column B')
        .apply(lambda group: len(group))
       ).compute()

UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.
  Before: .apply(func)
  After:  .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result
  or:     .apply(func, meta=('x', 'f8'))            for series result
  warnings.warn(msg)
Out[60]: 
Column B
Alice    2
David    2
Sam      3
dtype: int64

Trying to define meta produces AttributeError

 (dask_df.groupby('Column B')
         .apply(lambda d: len(d), meta={'Column B': 'int'})).compute()

same for this

 (dask_df.groupby('Column B')
         .apply(lambda d: len(d), meta=pd.DataFrame({'Column B': 'int'}))).compute()

same if I try having the dtype be int instead of "int" or for that matter 'f8' or np.float64 so it doesn't seem like it's the dtype that is causing the problem.

The documentation on meta seems to imply that I should be doing exactly what I'm trying to do (http://dask.pydata.org/en/latest/dataframe-design.html#metadata).

What is meta? and how am I supposed to define it?

Using python 3.6 dask 0.14.3 and pandas 0.20.2


回答1:


meta is the prescription of the names/types of the output from the computation. This is required because apply() is flexible enough that it can produce just about anything from a dataframe. As you can see, if you don't provide a meta, then dask actually computes part of the data, to see what the types should be - which is fine, but you should know it is happening. You can avoid this pre-computation (which can be expensive) and be more explicit when you know what the output should look like, by providing a zero-row version of the output (dataframe or series), or just the types.

The output of your computation is actually a series, so the following is the simplest that works

(dask_df.groupby('Column B')
     .apply(len, meta=('int'))).compute()

but more accurate would be

(dask_df.groupby('Column B')
     .apply(len, meta=pd.Series(dtype='int', name='Column B')))


来源:https://stackoverflow.com/questions/44432868/dask-dataframe-apply-meta

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!