Keras: MobileNet to localize image features

*爱你&永不变心* 提交于 2019-12-23 01:36:24

问题


I have a custom image-set where I am trying to localize 4 features in that image. Those values are x,y coordinates. I've ran some basic CNN's and those run fine. My goal now is to convert to MobileNet.

I had trouble using Keras's built-in MobileNet & code... so I mimicked the structure with the appropriate layers. It seems that the base model is geared towards classification, where mine is really just trying to locate the 8 x,y coordinates. I've done my best to fit the differing output layers, but my loss so far is pretty bad with a high learning rate.

Where am I going wrong? I feel as though i am missing something by not being able to use the internal MN model, as MobileNet is advertised to accommodate object detection as well as classificaiton.

My implementation (the tricky bit seems to be the end):

model = Sequential()

model.add(Conv2D(32, (3, 3), strides=(2, 2), padding='same',
                 use_bias=False, input_shape=(224, 224, 3)))
model.add(BatchNormalization())
model.add(Activation('relu'))

# block 1 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(1, 1), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(64, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 2 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(2, 2), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(128, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 3 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(1, 1), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(128, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 4 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(2, 2), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(256, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 5 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(1, 1), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(256, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 6 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(2, 2), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(512, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 7 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(1, 1), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(512, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 8 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(1, 1), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(512, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 9 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(1, 1), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(512, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 10 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(1, 1), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(512, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 11 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(1, 1), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(512, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 12 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(2, 2), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(1024, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########

# block 13 ###########
model.add(ZeroPadding2D(padding=(1, 1)))
model.add(DepthwiseConv2D((3, 3), padding='valid',
                          depth_multiplier=1, strides=(1, 1), use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(1024, (1, 1), strides=(1, 1), padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation('relu'))
###########


# final -- tried shaping for my output
model.add(GlobalAveragePooling2D())
model.add(Reshape((1, 1, 1024)))
model.add(Dropout(1e-3))
model.add(Conv2D(8, (1, 1), padding='same'))
model.add(Activation('softmax'))
model.add(Reshape((8,)))

# output layers that give me a better result for 8 keypoints
# model.add(Flatten())
# model.add(Dense(2000))
# model.add(Activation('relu'))
# model.add(Dropout(0.5))  # !
# model.add(Dense(2000))
# model.add(Activation('relu'))
# model.add(Dense(8))

来源:https://stackoverflow.com/questions/49473281/keras-mobilenet-to-localize-image-features

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!