问题
I want to create a pd.pivot_table in python where one column is a datetime object, but I want also, to group my results on a weekly basis. Here's a simple example: I have the following DataFrame:
import pandas as pd
names = ['a', 'b', 'c', 'd'] * 7
dates = ['2017-01-11', '2017-01-08', '2017-01-14', '2017-01-05', '2017-01-10', '2017-01-13', '2017-01-02', '2017-01-12', '2017-01-10', '2017-01-05', '2017-01-01', '2017-01-04', '2017-01-11', '2017-01-14', '2017-01-05', '2017-01-06', '2017-01-14', '2017-01-11', '2017-01-06', '2017-01-05', '2017-01-08', '2017-01-10', '2017-01-07', '2017-01-04', '2017-01-02', '2017-01-04', '2017-01-01', '2017-01-12']
dates = [pd.to_datetime(i).date() for i in dates]
numbers = [4, 3, 2, 1 ] * 7
data = {'name': names , 'date': dates, 'number': numbers}
df = pd.DataFrame(data)
which yields:
date name number
0 2017-01-11 a 4
1 2017-01-08 b 3
2 2017-01-14 c 2
3 2017-01-05 d 1
4 2017-01-10 a 4
5 2017-01-13 b 3
6 2017-01-02 c 2
7 2017-01-12 d 1
8 2017-01-10 a 4
9 2017-01-05 b 3
10 2017-01-01 c 2
11 2017-01-04 d 1
12 2017-01-11 a 4
13 2017-01-14 b 3
14 2017-01-05 c 2
15 2017-01-06 d 1
16 2017-01-14 a 4
17 2017-01-11 b 3
18 2017-01-06 c 2
19 2017-01-05 d 1
20 2017-01-08 a 4
21 2017-01-10 b 3
22 2017-01-07 c 2
23 2017-01-04 d 1
24 2017-01-02 a 4
25 2017-01-04 b 3
26 2017-01-01 c 2
27 2017-01-12 d 1
I want to create a pivot table where the rows are going to be the names, the columns are going to be the dates on a weekly basis and the numbers are going to be the sum of the number column. For example, the first row of the pivot table will be:
2017-01-01 2017-01-08 2017-01-15 ...
a 4 24 0
What I am doing is:
pd.pivot_table(data=df, values='number', columns=pd.Grouper(key='date', freq='1W'), index='name', aggfunc=sum)
but I get the Error:
TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'RangeIndex'.
How am I supposed to do that? I don't know if I can use the date as an index, since all the date values are not unique.
回答1:
IIUC:
first make sure that the date column is of datetime dtype:
df['date'] = pd.to_datetime(df['date'], errors='coerce')
then you can group, sum and unstack:
In [289]: (df.groupby(['name', pd.Grouper(freq='W', key='date')])
['number']
.sum()
.unstack(fill_value=0))
Out[289]:
date 2017-01-01 2017-01-08 2017-01-15
name
a 0 8 20
b 0 9 12
c 4 8 2
d 0 5 2
or as proposed by @thanasissdr:
In [328]: (df.groupby(['name', pd.Grouper(freq='W', key='date', closed='left')])
['number']
.sum()
.unstack(fill_value=0))
Out[328]:
date 2017-01-08 2017-01-15
name
a 4 24
b 6 15
c 12 2
d 5 2
or
In [330]: (df.assign(date=df['date']-pd.offsets.Day(7))
...: .groupby(['name', pd.Grouper(freq='W', key='date', closed='left')])
...: ['number']
...: .sum()
...: .unstack(fill_value=0))
...:
Out[330]:
date 2017-01-01 2017-01-08
name
a 4 24
b 6 15
c 12 2
d 5 2
回答2:
Continuing with my logic, we can create a multi-index, where the date is part of the index. So we can have:
import pandas as pd
names = ['a', 'b', 'c', 'd'] * 7
dates = ['2017-01-11', '2017-01-08', '2017-01-14', '2017-01-05', '2017-01-10', '2017-01-13', '2017-01-02', '2017-01-12', '2017-01-10', '2017-01-05', '2017-01-01', '2017-01-04', '2017-01-11', '2017-01-14', '2017-01-05', '2017-01-06', '2017-01-14', '2017-01-11', '2017-01-06', '2017-01-05', '2017-01-08', '2017-01-10', '2017-01-07', '2017-01-04', '2017-01-02', '2017-01-04', '2017-01-01', '2017-01-12']
dates = [pd.to_datetime(i).date() for i in dates]
numbers = [4, 3, 2, 1 ] * 7
data = {'name': names , 'date': dates, 'number': numbers}
df = pd.DataFrame(data)
df.set_index([df.index, df.date], inplace=True)
print pd.pivot_table(data=df, columns=pd.Grouper(freq='7d', level='date', closed='left') , index='name', aggfunc=sum)
which yields exactly:
number
date 2017-01-01 2017-01-08
name
a 4 24
b 6 15
c 12 2
d 5 2
来源:https://stackoverflow.com/questions/47860292/creating-a-pivot-table-in-pandas-and-grouping-at-the-same-time-the-dates-per-wee