Running multiple, simple linear regressions from dataframe in R

风流意气都作罢 提交于 2019-12-20 14:14:30

问题


I have a dataset (data frame) with 5 columns all containing numeric values.

I'm looking to run a simple linear regression for each pair in the dataset.

For example, If the columns were named A, B, C, D, E, I want to run lm(A~B), lm(A~C), lm(A~D), ...., lm(D~E),... and, then I want to plot the data for each pair along with the regression line.

I'm pretty new to R so I'm sort of spinning my wheels on how to actually accomplish this. Should I use ddply? or lapply? I'm not really sure how to tackle this.


回答1:


Here's one solution using combn

 combn(names(DF), 2, function(x){lm(DF[, x])}, simplify = FALSE)

Example:

set.seed(1)
DF <- data.frame(A=rnorm(50, 100, 3),
                 B=rnorm(50, 100, 3),
                 C=rnorm(50, 100, 3),
                 D=rnorm(50, 100, 3),
                 E=rnorm(50, 100, 3))

Updated: adding @Henrik suggestion (see comments)

# only the coefficients
> results <- combn(names(DF), 2, function(x){coefficients(lm(DF[, x]))}, simplify = FALSE)
> vars <- combn(names(DF), 2)
> names(results) <- vars[1 , ] # adding names to identify variables in the reggression
> results
$A
 (Intercept)            B 
103.66739418  -0.03354243 

$A
(Intercept)           C 
97.88341555  0.02429041 

$A
(Intercept)           D 
122.7606103  -0.2240759 

$A
(Intercept)           E 
99.26387487  0.01038445 

$B
 (Intercept)            C 
99.971253525  0.003824755 

$B
 (Intercept)            D 
102.65399702  -0.02296721 

$B
(Intercept)           E 
96.83042199  0.03524868 

$C
(Intercept)           D 
 80.1872211   0.1931079 

$C
(Intercept)           E 
 89.0503893   0.1050202 

$D
 (Intercept)            E 
107.84384655  -0.07620397 



回答2:


I would recommend to also look at the correlation matrix (cor(DF)), which is usually the best way to discover linear relationships between variables. The correlation is tightly linked to the covariance and the slopes of a simple linear regression. The computation below exemplifies this link.

Sample data:

set.seed(1)
DF <- data.frame(
  A=rnorm(50, 100, 3),
  B=rnorm(50, 100, 3),
  C=rnorm(50, 100, 3),
  D=rnorm(50, 100, 3),
  E=rnorm(50, 100, 3)
)

The regression slope is cov(x, y) / var(x)

beta = cov(DF) * (1/diag(var(DF)))

            A            B           C           D           E
A  1.00000000 -0.045548503 0.028448192 -0.32982367  0.01800795
B -0.03354243  1.000000000 0.003298708 -0.02489518  0.04501362
C  0.02429041  0.003824755 1.000000000  0.24269838  0.15550116
D -0.22407592 -0.022967212 0.193107904  1.00000000 -0.08977834
E  0.01038445  0.035248685 0.105020194 -0.07620397  1.00000000

The intercept is mean(y) - beta * mean(x)

colMeans(DF) - beta * colMeans(DF)

             A         B         C         D         E
A 1.421085e-14 104.86992  97.44795 133.38310  98.49512
B 1.037180e+02   0.00000 100.02095 102.85026  95.83477
C 9.712461e+01  99.16182   0.00000  75.38373  84.06356
D 1.226899e+02 102.53263  80.87529   0.00000 109.22915
E 9.886859e+01  96.38451  89.41391 107.51930   0.00000



回答3:


Using combn for all combination of names of column (in the following example I assumed you want combination of two columns only) and Map for running over loops.

Example using mtcars data from R:

colc<-names(mtcars)
colcc<-combn(colc,2)
colcc<-data.frame(colcc)
kk<-Map(function(x)lm(as.formula(paste(colcc[1,x],"~",paste(colcc[2,x],collapse="+"))),data=mtcars), as.list(1:nrow(colcc)))

 head(kk)
[[1]]

Call:
lm(formula = as.formula(paste(colcc[1, x], "~", paste(colcc[2, 
    x], collapse = "+"))), data = mtcars)

Coefficients:
(Intercept)          cyl  
     37.885       -2.876  


[[2]]

Call:
lm(formula = as.formula(paste(colcc[1, x], "~", paste(colcc[2, 
    x], collapse = "+"))), data = mtcars)

Coefficients:
(Intercept)         disp  
   29.59985     -0.04122  


[[3]]

Call:
lm(formula = as.formula(paste(colcc[1, x], "~", paste(colcc[2, 
    x], collapse = "+"))), data = mtcars)

Coefficients:
(Intercept)           hp  
   30.09886     -0.06823  


[[4]]

Call:
lm(formula = as.formula(paste(colcc[1, x], "~", paste(colcc[2, 
    x], collapse = "+"))), data = mtcars)

Coefficients:
(Intercept)         drat  
     -7.525        7.678  


[[5]]

Call:
lm(formula = as.formula(paste(colcc[1, x], "~", paste(colcc[2, 
    x], collapse = "+"))), data = mtcars)

Coefficients:
(Intercept)           wt  
     37.285       -5.344  


[[6]]

Call:
lm(formula = as.formula(paste(colcc[1, x], "~", paste(colcc[2, 
    x], collapse = "+"))), data = mtcars)

Coefficients:
(Intercept)         qsec  
     -5.114        1.412  


来源:https://stackoverflow.com/questions/18947563/running-multiple-simple-linear-regressions-from-dataframe-in-r

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!