问题
I have a DataFrame like this:
Name asn count
Org1 asn1,asn2 1
org2 asn3 2
org3 asn4,asn5 5
I would like to convert my DataFrame to look like this:
Name asn count
Org1 asn1 1
Org1 asn2 1
org2 asn3 2
org3 asn4 5
Org3 asn5 5
I know used the following code to do it with two columns, but I am not sure how can I do it for three.
df2 = df.asn.str.split(',').apply(pd.Series)
df2.index = df.Name
df2 = df2.stack().reset_index('Name')
Can anybody help?
回答1:
Carrying on from the same idea, you could set a MultiIndex for df2
and then stack. For example:
>>> df2 = df.asn.str.split(',').apply(pd.Series)
>>> df2.index = df.set_index(['Name', 'count']).index
>>> df2.stack().reset_index(['Name', 'count'])
Name count 0
0 Org1 1 asn1
1 Org1 1 asn2
0 org2 2 asn3
0 org3 5 asn4
1 org3 5 asn5
You can then rename the column and set an index of your choosing.
回答2:
As an alternative:
import pandas as pd
from StringIO import StringIO
ctn = '''Name asn count
Org1 asn1,asn2 1
org2 asn3 2
org3 asn4,asn5 5'''
df = pd.read_csv(StringIO(ctn), sep='\s*', engine='python')
s = df['asn'].str.split(',').apply(pd.Series, 1).stack()
s.index = s.index.droplevel(-1)
s.name = 'asn'
del df['asn']
df = df.join(s)
print df
Result:
Name count asn
0 Org1 1 asn1
0 Org1 1 asn2
1 org2 2 asn3
2 org3 5 asn4
2 org3 5 asn5
来源:https://stackoverflow.com/questions/29605352/pandas-how-to-convert-a-cell-with-multiple-values-to-multiple-rows