Can Z3 handle sinusoidal and exponential functions

有些话、适合烂在心里 提交于 2019-12-20 07:28:02

问题


Based on some non-linear constraints on $a_k$,$b_k$, I have to find feasible set of the following fourier series expression:

$ x(t)= {a_0+ \sum_{k=1}^{\infty}   (a_k\cos(2\pi f_0 kt)+(b_k\sin(2\pi f_0 kt))}

Whereas constraints on $a_k$,$b_k$ and $a_0$ are

$ L \leq a_0 \leq U $

$ Lower_bound \leq a_k^2+b_k^2 \leq Upper_bound

Can I do this using Z3?

In addition to this can I use Z3 for exponential functions having complex powers, e.g. in fourier transform expression.


回答1:


Unfortunately, Z3 does not have support for transcendental functions such as sin, cos and exponential yet. The current version can only handle nonlinear polynomial constraints. You may consider the MetiTarski theorem prover. BTW, MetiTarski uses Z3 to discharge nonlinear polynomial constraints.



来源:https://stackoverflow.com/questions/15148707/can-z3-handle-sinusoidal-and-exponential-functions

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!