问题
I'm trying to implement a simple vector class which uses expression templates in order to avoid that expressions such as vector w = x + y + z are implemented inefficiently (the implementation would first produce a temporary vector to hold x + y and then produce another vector with the elements of z added in):
namespace math
{
template<class E>
class expression
{
public:
auto size() const {
return static_cast<E const&>(*this).size();
}
auto operator[](std::size_t i) const
{
if (i >= size())
throw std::length_error("");
return static_cast<E const&>(*this)[i];
}
operator E&() { return static_cast<E&>(*this); }
operator E const&() const { return static_cast<E const&>(*this); }
}; // class expression
template<typename T, class Allocator = std::allocator<T>>
class vector
: public expression<vector<T>>
{
private:
using data_type = std::vector<T, Allocator>;
data_type m_data;
public:
using value_type = T;
using allocator_type = Allocator;
using size_type = typename data_type::size_type;
using difference_type = typename data_type::difference_type;
using reference = typename data_type::reference;
using const_reference = typename data_type::const_reference;
using pointer = typename data_type::pointer ;
using const_pointer = typename data_type::const_pointer;
vector(size_type d)
: m_data(d)
{ }
vector(std::initializer_list<value_type> init)
: m_data(init)
{ }
template<class E>
vector(expression<E> const& expression)
: m_data(expression.size())
{
for (size_type i = 0; i < expression.size(); ++i)
m_data[i] = expression[i];
}
size_type size() const {
return m_data.size();
}
value_type operator[](size_type i) const { return m_data[i]; }
value_type& operator[](size_type i) { return m_data[i]; };
}; // class vector
namespace detail
{
template<typename T>
class scalar
: public expression<scalar<T>>
{
public:
using value_type = T;
using allocator_type = std::allocator<void>;
using size_type = typename std::allocator<T>::size_type;
using difference_type = typename std::allocator<T>::difference_type;
using reference = typename std::allocator<T>::reference;
using const_reference = typename std::allocator<T>::const_reference;
using pointer = typename std::allocator<T>::pointer;
using const_pointer = typename std::allocator<T>::const_pointer;
scalar(value_type value)
: m_value(value)
{ }
size_type size() const {
return 0;
}
operator value_type&() { return static_cast<value_type&>(*this); }
operator value_type const&() const { return static_cast<value_type const&>(*this); }
value_type operator[](size_type i) const { return m_value; }
value_type& operator[](size_type i) { return m_value; }
private:
value_type m_value;
}; // class scalar
template<class>
struct is_scalar : std::false_type { };
template<class T>
struct is_scalar<scalar<T>> : std::true_type { };
} // namespace detail
template<class E1, class E2, class BinaryOperation>
class vector_binary_operation
: public expression<vector_binary_operation<E1, E2, BinaryOperation>>
{
public:
using value_type = decltype(BinaryOperation()(typename E1::value_type(), typename E2::value_type()));
using allocator_type = std::conditional_t<
detail::is_scalar<E1>::value,
typename E2::allocator_type::template rebind<value_type>::other,
typename E1::allocator_type::template rebind<value_type>::other>;
private:
using vector_type = vector<value_type, allocator_type>;
public:
using size_type = typename vector_type::size_type;
using difference_type = typename vector_type::difference_type;
using reference = typename vector_type::reference;
using const_reference = typename vector_type::const_reference;
using pointer = typename vector_type::pointer;
using const_pointer = typename vector_type::const_pointer;
vector_binary_operation(expression<E1> const& e1, expression<E2> const& e2, BinaryOperation op)
: m_e1(e1), m_e2(e2),
m_op(op)
{
if (e1.size() > 0 && e2.size() > 0 && !(e1.size() == e2.size()))
throw std::logic_error("");
}
size_type size() const {
return m_e1.size(); // == m_e2.size()
}
value_type operator[](size_type i) const {
return m_op(m_e1[i], m_e2[i]);
}
private:
E1 m_e1;
E2 m_e2;
//E1 const& m_e1;
//E2 const& m_e2;
BinaryOperation m_op;
}; // class vector_binary_operation
template<class E1, class E2>
vector_binary_operation<E1, E2, std::plus<>>
operator+(expression<E1> const& e1, expression<E2> const& e2) {
return{ e1, e2, std::plus<>() };
}
template<class E1, class E2>
vector_binary_operation<E1, E2, std::minus<>>
operator-(expression<E1> const& e1, expression<E2> const& e2) {
return{ e1, e2, std::minus<>() };
}
template<class E1, class E2>
vector_binary_operation<E1, E2, std::multiplies<>>
operator*(expression<E1> const& e1, expression<E2> const& e2) {
return{ e1, e2, std::multiplies<>() };
}
template<class E1, class E2>
vector_binary_operation<E1, E2, std::divides<>>
operator/(expression<E1> const& e1, expression<E2> const& e2) {
return{ e1, e2, std::divides<>() };
}
template<class E, typename T>
vector_binary_operation<E, detail::scalar<T>, std::divides<>>
operator/(expression<E> const& expr, T val) {
return{ expr, detail::scalar<T>(val), std::divides<>() };
}
template<class E, typename T>
vector_binary_operation<E, detail::scalar<T>, std::multiplies<>>
operator*(T val, expression<E> const& expr) {
return{ expr, detail::scalar<T>(val), std::multiplies<>() };
}
template<class E, typename T>
vector_binary_operation<E, detail::scalar<T>, std::multiplies<>>
operator*(expression<E> const& expr, T val) {
return{ expr, detail::scalar<T>(val), std::multiplies<>() };
}
} // namespace math
I don't know how I need to deal with the expression member variables in vector_binary_operation. It would make sense to declare them as const references, cause the whole point of the code is to avoid unnecessary copies. However, if we write sum = a + b + c, we will end up keeping a reference to the temporary a + b. Doing sum[0] will call operator()[0] on that temporary. But that object was deleted after the previous line.
What should I do?
回答1:
I was facing a similar decision in my expression template code quite some time ago. The choice of how to store the wrapped arrays is thereby of central importance and should be made with care. But let's assume you already settled for references: that is, if you have code like
vector a;
vector b;
auto c = a + b;
a and b are stored by const-reference. This implies that as long as you use c, the original vectors have to be kept alive. (Other choices would be store-by-value, which can be expensive, or store-by-(wrapped)-shared-pointer, which let's you use c even if a or b left their scope but comes with a call overhead.)
Ok, but now as you settled for references, you obviously want to avoid references to a temporary. For that, C++ move semantics offers already anything you need:
template<typename E1, typename E2>
auto operator+(E1&& e1, E2&& e2)
{
using value_type = decltype(e1[0] + e2[0]);
return vector_binary_operation<E1, E2, std::plus<value_type> >
{std::forward<E1>(e1), std::forward<E2>(e2), std::plus<value_type>{}};
}
The difference to your code is in the type deduction of the used rvalue references E1&& and E2&&. Their purpose is to indicate whether the function got a valid and named object or a temporary. Based on this information, in this function you can make the choice how to store the passed references in the returned expression classes.
For example, if you now add two vectors
auto c = a + b;
E1 and E2 will be deduced both as vector&. On the opposite, if you have
auto d = (a + b) + b;
E1 is vector_binary_operation<vector&, vector&, std::plus<> > -- no reference here -- whereas E2 is still vector&.
来源:https://stackoverflow.com/questions/35627286/handling-references-to-expressions-in-a-vector-binary-operation-class-withou