问题
I know that I can't lock a single mongodb document, in fact there is no way to lock a collection either.
However, I've got this scenario, where I think I need some way to prevent more than one thread (or process, it's not important) from modifying a document. Here's my scenario.
I have a collection that contains object of type A. I have some code that retrieve a document of type A, add an element in an array that is a property of the document (a.arr.add(new Thing()) and then save back the document to mongodb. This code is parallel, multiple threads in my applications can do theses operations and for now there is no way to prevent to threads from doing theses operations in parallel on the same document. This is bad because one of the threads could overwrite the works of the other.
I do use the repository pattern to abstract the access to the mongodb collection, so I only have CRUDs operations at my disposition.
Now that I think about it, maybe it's a limitation of the repository pattern and not a limitation of mongodb that is causing me troubles. Anyway, how can I make this code "thread safe"? I guess there's a well known solution to this problem, but being new to mongodb and the repository pattern, I don't immediately sees it.
Thanks
回答1:
Stumbled into this question while working on mongodb upgrades. Unlike at the time this question was asked, now mongodb supports document level locking out of the box.
From: http://docs.mongodb.org/manual/faq/concurrency/
"How granular are locks in MongoDB?
Changed in version 3.0.
Beginning with version 3.0, MongoDB ships with the WiredTiger storage engine, which uses optimistic concurrency control for most read and write operations. WiredTiger uses only intent locks at the global, database and collection levels. When the storage engine detects conflicts between two operations, one will incur a write conflict causing MongoDB to transparently retry that operation."
回答2:
Hey the only way of which I think now is to add an status parameter and use the operation findAndModify(), which enables you to atomically modify a document. It's a bit slower, but should do the trick.
So let's say you add an status attribut and when you retrieve the document change the status from "IDLE" to "PROCESSING". Then you update the document and save it back to the collection updating the status to "IDLE" again.
Code example:
var doc = db.runCommand({
"findAndModify" : "COLLECTION_NAME",
"query" : {"_id": "ID_DOCUMENT", "status" : "IDLE"},
"update" : {"$set" : {"status" : "RUNNING"} }
}).value
Change the COLLECTION_NAME and ID_DOCUMENT to a proper value. By default findAndModify() returns the old value, which means the status value will be still IDLE on the client side. So when you are done with updating just save/update everything again.
The only think you need be be aware is that you can only modify one document at a time.
Hope it helps.
回答3:
"Doctor, it hurts when I do this"
"Then don't do that!"
Basically, what you're describing sounds like you've got a serial dependency there -- MongoDB or whatever, your algorithm has a point at which the operation has to be serialized. That will be an inherent bottleneck, and if you absolutely must do it, you'll have to arrange some kind of semaphore to protect it.
So, the place to look is at your algorithm. Can you eliminate that? Could you, for example, handle it with some kind of conflict resolution, like "get record into local' update; store record" so that after the store the new record would be the one gotten on that key?
回答4:
Classic solution when you want to make something thread-safe is to use locks (mutexes). This is also called pessimistic locking as opposed to optimistic locking described here.
There are scenarios when pessimistic locking is more efficient (more details here). It is also far easier to implement (major difficulty of optimistic locking is recovery from collision).
MongoDB does not provide mechanism for a lock. But this can be easily implemented at application level (i.e. in your code):
- Acquire lock
- Read document
- Modify document
- Write document
- Release lock
The granularity of the lock can be different: global, collection-specific, record/document-specific. The more specific the lock the less its performance penalty.
回答5:
Answering my own question because I found a solution while doing research on the Internet.
I think what I need to do is use an Optimistic Concurency Control.
It consist in adding a timestamp, a hash or another unique identifier (I'll used UUIDs) to every documents. The unique identifier must be modified each time the document is modified. before updating the document I'll do something like this (in pseudo-code) :
var oldUUID = doc.uuid;
doc.uuid = new UUID();
BeginTransaction();
if (GetDocUUIDFromDatabase(doc.id) == oldUUID)
{
SaveToDatabase(doc);
Commit();
}
else
{
// Document was modified in the DB since we read it. We can't save our changes.
RollBack();
throw new ConcurencyException();
}
回答6:
Update: With MongoDB 3.2.2 using WiredTiger Storage implementation as default engine, MongoDB use default locking at document level.It was introduced in version 3.0 but made default in version 3.2.2. Therefore MongoDB now has document level locking.
回答7:
An alternative is to do in place update
for ex:
http://www.mongodb.org/display/DOCS/Updating#comment-41821928
db.users.update( { level: "Sourcerer" }, { '$push' : { 'inventory' : 'magic wand'} }, false, true );
which will push 'magic wand' into all "Sourcerer" user's inventory array. Update to each document/user is atomic.
回答8:
As of 4.0, MongoDB supports Transactions for replica sets. Support for sharded clusters will come in MongoDB 4.2. Using transactions, commit up DB updates will be aborted if a conflicting write occurs, solving your issue.
Transactions are much more costly in terms of performance so don't use Transactions as an excuse for poor NoSQL schema design!
回答9:
If you have a system with > 1 servers then you'll need a distributive lock.
I prefer to use Hazelcast.
While saving you can get Hazelcast lock by entity id, fetch and update data, then release a lock.
As an example: https://github.com/azee/template-api/blob/master/template-rest/src/main/java/com/mycompany/template/scheduler/SchedulerJob.java
Just use lock.lock() instead of lock.tryLock()
Here you can see how to configure Hazelcast in your spring context:
https://github.com/azee/template-api/blob/master/template-rest/src/main/resources/webContext.xml
回答10:
Instead of writing the question in another question, I try to answer this one: I wonder if this WiredTiger Storage will handle the problem I pointed out here: Limit inserts in mongodb
回答11:
If the order of the elements in the array is not important for you then the $push operator should be safe enough to prevent threads from overwriting each others changes.
回答12:
Sounds like you want to use MongoDB's atomic operators: http://www.mongodb.org/display/DOCS/Atomic+Operations
来源:https://stackoverflow.com/questions/11076272/its-not-possible-to-lock-a-mongodb-document-what-if-i-need-to