数据准备,猫眼评论爬取了大概50多万条数据,详细请看
# -*- coding:utf-8 -*-
import re # 正则表达式库
import collections # 词频统计库
import numpy as np # numpy数据处理库
import jieba # 结巴分词
import wordcloud # 词云展示库
from PIL import Image # 图像处理库
import matplotlib.pyplot as plt # 图像展示库
# 读取文件
fp = open(r'E:\python\self\comment\comment.txt',encoding='utf-8') # 打开文件
string_data = fp.read() # 读出整个文件
fp.close() # 关闭文件
# 文本预处理
pattern = re.compile(u'\t|\n|\.|-|:|;|\)|\(|\?|\*|!|"') # 定义正则表达式匹配模式
string_data = re.sub(pattern, '', string_data) # 将符合模式的字符去除
# 文本分词
seg_list_exact = jieba.cut(string_data, cut_all = False) # 精确模式分词
object_list = []
remove_words = [u'的', u',',u'和', u'是', u'随着', u'对于', u'对',u'等',u'能',u'都',u'。',u' ',u'、',u'中',u'在',u'了',
u'通常',u'如果',u'我们',u'需要',u'我',u'也',u'有',u'很',u'看',u'就',u'就',u'urlhttps',u'/',
u'还',u'太',u'不',u'你'] # 自定义去除词库
for word in seg_list_exact: # 循环读出每个分词
if word not in remove_words: # 如果不在去除词库中
object_list.append(word) # 分词追加到列表
# 词频统计
word_counts = collections.Counter(object_list) # 对分词做词频统计
word_counts_top10 = word_counts.most_common(10) # 获取前10最高频的词
print (word_counts_top10) # 输出检查
# 词频展示
mask = np.array(Image.open('E:/python/opencv/Minion5.jpg')) # 定义词频背景
wc = wordcloud.WordCloud(
font_path = 'C:/Windows/Fonts/simhei.ttf', # 设置字体格式
mask = mask, # 设置背景图
max_words = 200, # 最多显示词数
max_font_size = 150 # 字体最大值
)
wc.generate_from_frequencies(word_counts) # 从字典生成词云
image_colors = wordcloud.ImageColorGenerator(mask) # 从背景图建立颜色方案
wc.recolor(color_func=image_colors) # 将词云颜色设置为背景图方案
plt.imshow(wc) # 显示词云
plt.axis('off') # 关闭坐标轴
plt.show() # 显示图像
[('好看', 90257), ('好', 28264), ('哪吒', 25978), ('不错', 25958), ('电影', 22867), ('非常', 20423), ('喜欢', 15422), ('真的', 15043), ('国产', 13742), ('国漫', 13407)]

来源:https://blog.csdn.net/weixin_43512511/article/details/99477953