Can I make matplotlib sliders more discrete?

余生颓废 提交于 2019-12-17 15:50:48

问题


I'm using matplotlib sliders, similar to this demo. The sliders currently use 2 decimal places and 'feel' quite continuous (though they have to be discrete on some level). Can I decide on what level they are discrete? Integer steps? 0.1-sized steps? 0.5? My google-fu failed me.


回答1:


If you just want integer values, just pass in an approriate valfmt when you create the slider (e.g. valfmt='%0.0f')

However, if you want non-integer invervals, you'll need to manually set the text value each time. Even if you do this, though, the slider will still progress smoothly, and it won't "feel" like discrete intervals.

Here's an example:

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import Slider

class ChangingPlot(object):
    def __init__(self):
        self.inc = 0.5

        self.fig, self.ax = plt.subplots()
        self.sliderax = self.fig.add_axes([0.2, 0.02, 0.6, 0.03],
                                          axisbg='yellow')

        self.slider = Slider(self.sliderax, 'Value', 0, 10, valinit=self.inc)
        self.slider.on_changed(self.update)
        self.slider.drawon = False

        x = np.arange(0, 10.5, self.inc)
        self.ax.plot(x, x, 'ro')
        self.dot, = self.ax.plot(self.inc, self.inc, 'bo', markersize=18)

    def update(self, value):
        value = int(value / self.inc) * self.inc
        self.dot.set_data([[value],[value]])
        self.slider.valtext.set_text('{}'.format(value))
        self.fig.canvas.draw()

    def show(self):
        plt.show()

p = ChangingPlot()
p.show()

If you wanted to make the slider "feel" completely like discrete values, you could subclass matplotlib.widgets.Slider. The key effect is controlled by Slider.set_val

In that case, you'd do something like this:

class DiscreteSlider(Slider):
    """A matplotlib slider widget with discrete steps."""
    def __init__(self, *args, **kwargs):
        """Identical to Slider.__init__, except for the "increment" kwarg.
        "increment" specifies the step size that the slider will be discritized
        to."""
        self.inc = kwargs.pop('increment', 0.5)
        Slider.__init__(self, *args, **kwargs)

    def set_val(self, val):
        discrete_val = int(val / self.inc) * self.inc
        # We can't just call Slider.set_val(self, discrete_val), because this 
        # will prevent the slider from updating properly (it will get stuck at
        # the first step and not "slide"). Instead, we'll keep track of the
        # the continuous value as self.val and pass in the discrete value to
        # everything else.
        xy = self.poly.xy
        xy[2] = discrete_val, 1
        xy[3] = discrete_val, 0
        self.poly.xy = xy
        self.valtext.set_text(self.valfmt % discrete_val)
        if self.drawon: 
            self.ax.figure.canvas.draw()
        self.val = val
        if not self.eventson: 
            return
        for cid, func in self.observers.iteritems():
            func(discrete_val)

And as a full example of using it:

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import Slider

class ChangingPlot(object):
    def __init__(self):
        self.inc = 0.5

        self.fig, self.ax = plt.subplots()
        self.sliderax = self.fig.add_axes([0.2, 0.02, 0.6, 0.03],
                                          facecolor='yellow')

        self.slider = DiscreteSlider(self.sliderax, 'Value', 0, 10, 
                                     increment=self.inc, valinit=self.inc)
        self.slider.on_changed(self.update)

        x = np.arange(0, 10.5, self.inc)
        self.ax.plot(x, x, 'ro')
        self.dot, = self.ax.plot(self.inc, self.inc, 'bo', markersize=18)

    def update(self, value):
        self.dot.set_data([[value],[value]])
        self.fig.canvas.draw()

    def show(self):
        plt.show()

class DiscreteSlider(Slider):
    """A matplotlib slider widget with discrete steps."""
    def __init__(self, *args, **kwargs):
        """Identical to Slider.__init__, except for the "increment" kwarg.
        "increment" specifies the step size that the slider will be discritized
        to."""
        self.inc = kwargs.pop('increment', 0.5)
        Slider.__init__(self, *args, **kwargs)
        self.val = 1

    def set_val(self, val):
        discrete_val = int(val / self.inc) * self.inc
        # We can't just call Slider.set_val(self, discrete_val), because this 
        # will prevent the slider from updating properly (it will get stuck at
        # the first step and not "slide"). Instead, we'll keep track of the
        # the continuous value as self.val and pass in the discrete value to
        # everything else.
        xy = self.poly.xy
        xy[2] = discrete_val, 1
        xy[3] = discrete_val, 0
        self.poly.xy = xy
        self.valtext.set_text(self.valfmt % discrete_val)
        if self.drawon: 
            self.ax.figure.canvas.draw()
        self.val = val
        if not self.eventson: 
            return
        for cid, func in self.observers.items():
            func(discrete_val)


p = ChangingPlot()
p.show()




回答2:


If you would rather not subclass the Slider, I picked a few lines off @Joe Kington's answer to accomplish the discretization within the callback function:

sldr = Slider(ax,'name',0.,5.,valinit=0.,valfmt="%i")
sldr.on_changed(partial(set_slider,sldr))

and then:

def set_slider(s,val):
    s.val = round(val)
    s.poly.xy[2] = s.val,1
    s.poly.xy[3] = s.val,0
    s.valtext.set_text(s.valfmt % s.val)


来源:https://stackoverflow.com/questions/13656387/can-i-make-matplotlib-sliders-more-discrete

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!