链接:
https://codeforces.com/contest/1272/problem/D
题意:
You are given an array a consisting of n integers.
You can remove at most one element from this array. Thus, the final length of the array is n−1 or n.
Your task is to calculate the maximum possible length of the strictly increasing contiguous subarray of the remaining array.
Recall that the contiguous subarray a with indices from l to r is a[l…r]=al,al+1,…,ar. The subarray a[l…r] is called strictly increasing if al<al+1<⋯<ar.
思路:
正着反着算一边,能往两边延长的最大长度,对每个点特判。
代码:
#include<bits/stdc++.h> using namespace std; const int MAXN = 2e5+10; int Dp[MAXN], a[MAXN], Dpr[MAXN]; int n; int main() { cin >> n; for (int i = 1;i <= n;++i) cin >> a[i]; int ans = 1; Dp[0] = Dpr[n+1] = 0; Dp[1] = Dpr[n] = 1; for (int i = 2;i <= n;++i) { if (a[i] > a[i-1]) Dp[i] = Dp[i-1]+1; else Dp[i] = 1; } for (int i = n-1;i >= 1;--i) { if (a[i] < a[i+1]) Dpr[i] = Dpr[i+1]+1; else Dpr[i] = 1; } for (int i = 2;i <= n;++i) { ans = max(ans, Dp[i]); if (a[i] > a[i-2]) ans = max(ans, Dp[i-2]+Dpr[i]); } cout << ans << endl; return 0; }
来源:https://www.cnblogs.com/YDDDD/p/12046674.html