AKS Primes algorithm in Python

不羁的心 提交于 2019-11-27 05:24:11

问题


A few years ago, it was proven that PRIMES is in P. Are there any algorithms implementing their primality test in Python? I wanted to run some benchmarks with a naive generator and see for myself how fast it is. I'd implement it myself, but I don't understand the paper enough yet to do that.


回答1:


Quick answer: no, the AKS test is not the fastest way to test primality. There are much much faster primality tests that either assume the (generalized) Riemann hypothesis and/or are randomized. (E.g. Miller-Rabin is fast and simple to implement.) The real breakthrough of the paper was theoretical, proving that a deterministic polynomial-time algorithm exists for testing primality, without assuming the GRH or other unproved conjectures.

That said, if you want to understand and implement it, Scott Aaronson's short article might help. It doesn't go into all the details, but you can start at page 10 of 12, and it gives enough. :-) There is also a list of implementations (mostly in C++) here.

Also, for optimization and improvements (by several orders of magnitude), you might want to look at this report, or (older) Crandall and Papadopoulos's report, or (older still) Daniel J Bernstein's report. All of them have fairly detailed pseudo-code that lends itself well to implementation.




回答2:


Yes, go look at AKS test for primes page on rosettacode.org

def expand_x_1(p):
    ex = [1]
    for i in range(p):
        ex.append(ex[-1] * -(p-i) / (i+1))
    return ex[::-1]

def aks_test(p):
    if p < 2: return False
    ex = expand_x_1(p)
    ex[0] += 1
    return not any(mult % p for mult in ex[0:-1])
    print('# p: (x-1)^p for small p')
    for p in range(12):
        print('%3i: %s' % (p, ' '.join('%+i%s' % (e, ('x^%i' % n) if n else '')
                                   for n,e in enumerate(expand_x_1(p)))))

print('\n# small primes using the aks test')
print([p for p in range(101) if aks_test(p)])

and the output is:

# p: (x-1)^p for small p
  0: +1
  1: -1 +1x^1
  2: +1 -2x^1 +1x^2
  3: -1 +3x^1 -3x^2 +1x^3
  4: +1 -4x^1 +6x^2 -4x^3 +1x^4
  5: -1 +5x^1 -10x^2 +10x^3 -5x^4 +1x^5
  6: +1 -6x^1 +15x^2 -20x^3 +15x^4 -6x^5 +1x^6
  7: -1 +7x^1 -21x^2 +35x^3 -35x^4 +21x^5 -7x^6 +1x^7
  8: +1 -8x^1 +28x^2 -56x^3 +70x^4 -56x^5 +28x^6 -8x^7 +1x^8
  9: -1 +9x^1 -36x^2 +84x^3 -126x^4 +126x^5 -84x^6 +36x^7 -9x^8 +1x^9
 10: +1 -10x^1 +45x^2 -120x^3 +210x^4 -252x^5 +210x^6 -120x^7 +45x^8 -10x^9 +1x^10
 11: -1 +11x^1 -55x^2 +165x^3 -330x^4 +462x^5 -462x^6 +330x^7 -165x^8 +55x^9 -11x^10 +1x^11

# small primes using the aks test
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]


来源:https://stackoverflow.com/questions/347811/aks-primes-algorithm-in-python

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!