grouping rows in list in pandas groupby

China☆狼群 提交于 2019-12-13 20:20:02

问题


I have a pandas data frame like:

a b
A 1
A 2
B 5
B 5
B 4
C 6

I want to group by the first column and get second column as lists in rows:

A [1,2]
B [5,5,4]
C [6]

Is it possible to do something like this using pandas groupby?


回答1:


You can do this using groupby to group on the column of interest and then apply list to every group:

In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
        df

Out[1]: 
   a  b
0  A  1
1  A  2
2  B  5
3  B  5
4  B  4
5  C  6

In [2]: df.groupby('a')['b'].apply(list)
Out[2]: 
a
A       [1, 2]
B    [5, 5, 4]
C          [6]
Name: b, dtype: object

In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
        df1
Out[3]: 
   a        new
0  A     [1, 2]
1  B  [5, 5, 4]
2  C        [6]



回答2:


If performance is important go down to numpy level:

import numpy as np

df = pd.DataFrame({'a': np.random.randint(0, 60, 600), 'b': [1, 2, 5, 5, 4, 6]*100})

def f(df):
         keys, values = df.sort_values('a').values.T
         ukeys, index = np.unique(keys, True)
         arrays = np.split(values, index[1:])
         df2 = pd.DataFrame({'a':ukeys, 'b':[list(a) for a in arrays]})
         return df2

Tests:

In [301]: %timeit f(df)
1000 loops, best of 3: 1.64 ms per loop

In [302]: %timeit df.groupby('a')['b'].apply(list)
100 loops, best of 3: 5.26 ms per loop



回答3:


As you were saying the groupby method of a pd.DataFrame object can do the job.

Example

 L = ['A','A','B','B','B','C']
 N = [1,2,5,5,4,6]

 import pandas as pd
 df = pd.DataFrame(zip(L,N),columns = list('LN'))


 groups = df.groupby(df.L)

 groups.groups
      {'A': [0, 1], 'B': [2, 3, 4], 'C': [5]}

which gives and index-wise description of the groups.

To get elements of single groups, you can do, for instance

 groups.get_group('A')

     L  N
  0  A  1
  1  A  2

  groups.get_group('B')

     L  N
  2  B  5
  3  B  5
  4  B  4



回答4:


A handy way to achieve this would be:

df.groupby('a').agg({'b':lambda x: list(x)})

Look into writing Custom Aggregations: https://www.kaggle.com/akshaysehgal/how-to-group-by-aggregate-using-py




回答5:


To solve this for several columns of a dataframe:

In [5]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6],'c'
   ...: :[3,3,3,4,4,4]})

In [6]: df
Out[6]: 
   a  b  c
0  A  1  3
1  A  2  3
2  B  5  3
3  B  5  4
4  B  4  4
5  C  6  4

In [7]: df.groupby('a').agg(lambda x: list(x))
Out[7]: 
           b          c
a                      
A     [1, 2]     [3, 3]
B  [5, 5, 4]  [3, 4, 4]
C        [6]        [4]

This answer was inspired from Anamika Modi's answer. Thank you!




回答6:


Use any of the following groupby and agg recipes.

# Setup
df = pd.DataFrame({
  'a': ['A', 'A', 'B', 'B', 'B', 'C'],
  'b': [1, 2, 5, 5, 4, 6],
  'c': ['x', 'y', 'z', 'x', 'y', 'z']
})
df

   a  b  c
0  A  1  x
1  A  2  y
2  B  5  z
3  B  5  x
4  B  4  y
5  C  6  z

To aggregate multiple columns as lists, use any of the following:

df.groupby('a').agg(list)
df.groupby('a').agg(pd.Series.tolist)

           b          c
a                      
A     [1, 2]     [x, y]
B  [5, 5, 4]  [z, x, y]
C        [6]        [z]

To group-listify a single column only, convert the groupby to a SeriesGroupBy object, then call SeriesGroupBy.agg. Use,

df.groupby('a').agg({'b': list})  # 4.42 ms 
df.groupby('a')['b'].agg(list)    # 2.76 ms - faster

a
A       [1, 2]
B    [5, 5, 4]
C          [6]
Name: b, dtype: object



回答7:


If looking for a unique list while grouping multiple columns this could probably help:

df.groupby('a').agg(lambda x: list(set(x))).reset_index()



回答8:


Let us using df.groupby with list and Series constructor

pd.Series({x : y.b.tolist() for x , y in df.groupby('a')})
Out[664]: 
A       [1, 2]
B    [5, 5, 4]
C          [6]
dtype: object



回答9:


Here I have grouped elements with "|" as a separator import pandas as pd

df = pd.read_csv('input.csv')

df
Out[1]:
  Area  Keywords
0  A  1
1  A  2
2  B  5
3  B  5
4  B  4
5  C  6

df.dropna(inplace =  True)
df['Area']=df['Area'].apply(lambda x:x.lower().strip())
print df.columns
df_op = df.groupby('Area').agg({"Keywords":lambda x : "|".join(x)})

df_op.to_csv('output.csv')
Out[2]:
df_op
Area  Keywords

A       [1| 2]
B    [5| 5| 4]
C          [6]


来源:https://stackoverflow.com/questions/47641184/converting-pandas-dataframe-to-contain-a-list

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!