Python Finding Prime Factors

好久不见. 提交于 2019-11-26 02:09:04

问题


Two part question:

1) Trying to determine the largest prime factor of 600851475143, I found this program online that seems to work. The problem is, I\'m having a hard time figuring out how it works exactly, though I understand the basics of what the program is doing. Also, I\'d like if you could shed some light on any method you may know of finding prime factors, perhaps without testing every number, and how your method works.

Here\'s the code that I found online for prime factorization:

n = 600851475143
i = 2
while i * i < n:
     while n % i == 0:
         n = n / i
     i = i + 1

print (n)

#takes about ~0.01secs

2) Why is that code so much faster than this code, which is just to test the speed and has no real purpose other than that?

i = 1
while i < 100:
    i += 1
#takes about ~3secs

回答1:


This question was the first link that popped up when I googled "python prime factorization". As pointed out by @quangpn88, this algorithm is wrong (!) for perfect squares such as n = 4, 9, 16, ... However, @quangpn88's fix does not work either, since it will yield incorrect results if the largest prime factor occurs 3 or more times, e.g., n = 2*2*2 = 8 or n = 2*3*3*3 = 54.

I believe a correct, brute-force algorithm in Python is:

def largest_prime_factor(n):
    i = 2
    while i * i <= n:
        if n % i:
            i += 1
        else:
            n //= i
    return n

Don't use this in performance code, but it's OK for quick tests with moderately large numbers:

In [1]: %timeit largest_prime_factor(600851475143)
1000 loops, best of 3: 388 µs per loop

If the complete prime factorization is sought, this is the brute-force algorithm:

def prime_factors(n):
    i = 2
    factors = []
    while i * i <= n:
        if n % i:
            i += 1
        else:
            n //= i
            factors.append(i)
    if n > 1:
        factors.append(n)
    return factors



回答2:


Ok. So you said you understand the basics, but you're not sure EXACTLY how it works. First of all, this is a great answer to the Project Euler question it stems from. I've done a lot of research into this problem and this is by far the simplest response.

For the purpose of explanation, I'll let n = 20. To run the real Project Euler problem, let n = 600851475143.

n = 20 
i = 2

while i * i < n:
    while n%i == 0:
        n = n / i
    i = i + 1

print (n)

This explanation uses two while loops. The biggest thing to remember about while loops is that they run until they are no longer true.

The outer loop states that while i * i isn't greater than n (because the largest prime factor will never be larger than the square root of n), add 1 to i after the inner loop runs.

The inner loop states that while i divides evenly into n, replace n with n divided by i. This loop runs continuously until it is no longer true. For n=20 and i=2, n is replaced by 10, then again by 5. Because 2 doesn't evenly divide into 5, the loop stops with n=5 and the outer loop finishes, producing i+1=3.

Finally, because 3 squared is greater than 5, the outer loop is no longer true and prints the result of n.

Thanks for posting this. I looked at the code forever before realizing how exactly it worked. Hopefully, this is what you're looking for in a response. If not, let me know and I can explain further.




回答3:


It looks like people are doing the Project Euler thing where you code the solution yourself. For everyone else who wants to get work done, there's the primefac module which does very large numbers very quickly:

#!python

import primefac
import sys

n = int( sys.argv[1] )
factors = list( primefac.primefac(n) )
print '\n'.join(map(str, factors))



回答4:


For prime number generation I always use Sieve of Eratosthenes:

def primes(n):
    if n<=2:
        return []
    sieve=[True]*(n+1)
    for x in range(3,int(n**0.5)+1,2):
        for y in range(3,(n//x)+1,2):
            sieve[(x*y)]=False

    return [2]+[i for i in range(3,n,2) if sieve[i]]

In [42]: %timeit primes(10**5)
10 loops, best of 3: 60.4 ms per loop

In [43]: %timeit primes(10**6)
1 loops, best of 3: 1.01 s per loop

You can use Miller-Rabin primality test to check whether a number is prime or not. You can find its Python implementations here.

Always use timeit module to time your code, the 2nd one takes just 15us:

def func():
    n = 600851475143
    i = 2
    while i * i < n:
         while n % i == 0:
            n = n / i
         i = i + 1

In [19]: %timeit func()
1000 loops, best of 3: 1.35 ms per loop

def func():
    i=1
    while i<100:i+=1
   ....:     

In [21]: %timeit func()
10000 loops, best of 3: 15.3 us per loop



回答5:


Isn't largest prime factor of 27 is 3 ?? The above code might be fastest,but it fails on 27 right ? 27 = 3*3*3 The above code returns 1 As far as I know.....1 is neither prime nor composite

I think, this is the better code

def prime_factors(n):
    factors=[]
    d=2
    while(d*d<=n):
        while(n>1):            
            while n%d==0:
                factors.append(d)
                n=n/d
            d+=1
    return factors[-1]



回答6:


The code is wrong with 100. It should check case i * i = n:

I think it should be:

while i * i <= n:
    if i * i = n:
        n = i
        break

    while n%i == 0:
        n = n / i
    i = i + 1

print (n)



回答7:


Another way of doing this:

import sys
n = int(sys.argv[1])
result = []
for i in xrange(2,n):
    while n % i == 0:
        #print i,"|",n
        n = n/i
        result.append(i)

    if n == 1: 
        break

if n > 1: result.append(n)
print result

sample output :
python test.py 68
[2, 2, 17]




回答8:


"""
The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143 ?

"""

from sympy import primefactors
print primefactors(600851475143)[-1]



回答9:


def find_prime_facs(n):
  list_of_factors=[]
  i=2
  while n>1:
    if n%i==0:
      list_of_factors.append(i)
      n=n/i
      i=i-1
    i+=1  
  return list_of_factors



回答10:


My code:

# METHOD: PRIME FACTORS
def prime_factors(n):
    '''PRIME FACTORS: generates a list of prime factors for the number given
    RETURNS: number(being factored), list(prime factors), count(how many loops to find factors, for optimization)
    '''
    num = n                         #number at the end
    count = 0                       #optimization (to count iterations)
    index = 0                       #index (to test)
    t = [2, 3, 5, 7]                #list (to test)
    f = []                          #prime factors list
    while t[index] ** 2 <= n:
        count += 1                  #increment (how many loops to find factors)
        if len(t) == (index + 1):
            t.append(t[-2] + 6)     #extend test list (as much as needed) [2, 3, 5, 7, 11, 13...]
        if n % t[index]:            #if 0 does else (otherwise increments, or try next t[index])
            index += 1              #increment index
        else:
            n = n // t[index]       #drop max number we are testing... (this should drastically shorten the loops)
            f.append(t[index])      #append factor to list
    if n > 1:
        f.append(n)                 #add last factor...
    return num, f, f'count optimization: {count}'

Which I compared to the code with the most votes, which was very fast

    def prime_factors2(n):
        i = 2
        factors = []
        count = 0                           #added to test optimization
        while i * i <= n:
            count += 1                      #added to test optimization
            if n % i:
                i += 1
            else:
                n //= i
                factors.append(i)
        if n > 1:
            factors.append(n)
        return factors, f'count: {count}'   #print with (count added)

TESTING, (note, I added a COUNT in each loop to test the optimization)

# >>> prime_factors2(600851475143)
# ([71, 839, 1471, 6857], 'count: 1472')
# >>> prime_factors(600851475143)
# (600851475143, [71, 839, 1471, 6857], 'count optimization: 494')

I figure this code could be modified easily to get the (largest factor) or whatever else is needed. I'm open to any questions, my goal is to improve this much more as well for larger primes and factors.




回答11:


In case you want to use numpy here's a way to create an array of all primes not greater than n:

[ i for i in np.arange(2,n+1) if 0 not in np.array([i] * (i-2) ) % np.arange(2,i)]




回答12:


Check this out, it might help you a bit in your understanding.

#program to find the prime factors of a given number
import sympy as smp

try:
    number = int(input('Enter a number : '))
except(ValueError) :
    print('Please enter an integer !')
num = number
prime_factors = []
if smp.isprime(number) :
    prime_factors.append(number)
else :
    for i in range(2, int(number/2) + 1) :   
        """while figuring out prime factors of a given number, n
        keep in mind that a number can itself be prime or if not, 
        then all its prime factors will be less than or equal to its int(n/2 + 1)"""
        if smp.isprime(i) and number % i == 0 :
            while(number % i == 0) :
                prime_factors.append(i)
                number = number  / i
print('prime factors of ' + str(num) + ' - ')
for i in prime_factors :
    print(i, end = ' ')




回答13:


Below are two ways to generate prime factors of given number efficiently:

from math import sqrt


def prime_factors(num):
    '''
    This function collectes all prime factors of given number and prints them.
    '''
    prime_factors_list = []
    while num % 2 == 0:
        prime_factors_list.append(2)
        num /= 2
    for i in range(3, int(sqrt(num))+1, 2):
        if num % i == 0:
            prime_factors_list.append(i)
            num /= i
    if num > 2:
        prime_factors_list.append(int(num))
    print(sorted(prime_factors_list))


val = int(input('Enter number:'))
prime_factors(val)


def prime_factors_generator(num):
    '''
    This function creates a generator for prime factors of given number and generates the factors until user asks for them.
    It handles StopIteration if generator exhausted.
    '''
    while num % 2 == 0:
        yield 2
        num /= 2
    for i in range(3, int(sqrt(num))+1, 2):
        if num % i == 0:
            yield i
            num /= i
    if num > 2:
        yield int(num)


val = int(input('Enter number:'))
prime_gen = prime_factors_generator(val)
while True:
    try:
        print(next(prime_gen))
    except StopIteration:
        print('Generator exhausted...')
        break
    else:
        flag = input('Do you want next prime factor ? "y" or "n":')
        if flag == 'y':
            continue
        elif flag == 'n':
            break
        else:
            print('Please try again and enter a correct choice i.e. either y or n')



回答14:


You shouldn't loop till the square root of the number! It may be right some times, but not always!

Largest prime factor of 10 is 5, which is bigger than the sqrt(10) (3.16, aprox).

Largest prime factor of 33 is 11, which is bigger than the sqrt(33) (5.5,74, aprox).

You're confusing this with the propriety which states that, if a number has a prime factor bigger than its sqrt, it has to have at least another one other prime factor smaller than its sqrt. So, with you want to test if a number is prime, you only need to test till its sqrt.




回答15:


def prime(n):
    for i in range(2,n):
        if n%i==0:
            return False
    return True

def primefactors():
    m=int(input('enter the number:'))
    for i in range(2,m):
        if (prime(i)):
            if m%i==0:
                print(i)
    return print('end of it')

primefactors()



回答16:


Another way that skips even numbers after 2 is handled:

def prime_factors(n):
   factors = []
   d    = 2
   step = 1
   while d*d <= n:
      while n>1:
         while n%d == 0:
            factors.append(d)
            n = n/d
        d += step
        step = 2

  return factors



回答17:


n=int(input("Enter the number"))
if n==1 :  #because the below logic doesn't work on 1
    print(n)
for i in range(2 , n+1):
    if n%i==0 :
        n1=i  #get factor
        for b in range(2,n+1): #check if it is prime
            if ((n1%b)==0) & (n1==b):
                print(n1)
            elif (n1%b)==0 or n1<b:  #if not then pass
                break

i am sure this is the worst logic but it's all the knowledge i have in .py this program will get a number from user and prints all of it's factors numbers that are prime like for 12 it will give 2,3



来源:https://stackoverflow.com/questions/15347174/python-finding-prime-factors

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!