Why does pandas apply calculate twice

不想你离开。 提交于 2019-11-27 04:23:29

Probably related to this issue. With groupby, the applied function is called one extra time to see if certain optimizations can be done. I'd guess something similar is going on here. It doesn't look like there's any way around it at the moment (although I could be wrong about the source of the behavior you're seeing). Is there a reason you need it to not do that extra call.

Also, calling it four times when you apply on the column is normal. When you get one columnm you get a Series, not a DataFrame. apply on a Series applies the function to each element. Since your column has four elements in it, the function is called four times.

This behavior is intended, as an optimization.

See the docs:

In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!