Weekday as dummy / factor variable in a linear regression model using statsmodels

白昼怎懂夜的黑 提交于 2019-12-11 15:53:22

问题


The question:

How can I add a dummy / factor variable to a model using sm.OLS()?

The details

Below is a reproducible dataframe that you can pick up using ctrl + C and then run the snippet further down for a reproducible example.

Input data:

Date    A   B   weekday
2013-05-04  25.03   88.51   Saturday
2013-05-05  52.98   67.99   Sunday
2013-05-06  39.93   75.19   Monday
2013-05-07  47.31   86.99   Tuesday
2013-05-08  19.61   87.94   Wednesday
2013-05-09  39.51   83.10   Thursday
2013-05-10  21.22   62.16   Friday
2013-05-11  19.04   58.79   Saturday
2013-05-12  18.53   75.27   Sunday
2013-05-13  11.90   75.43   Monday
2013-05-14  47.64   64.76   Tuesday
2013-05-15  27.47   91.65   Wednesday
2013-05-16  11.20   59.83   Thursday
2013-05-17  25.10   67.47   Friday
2013-05-18  19.89   64.70   Saturday
2013-05-19  38.91   76.68   Sunday
2013-05-20  42.11   94.36   Monday
2013-05-21  7.845   73.67   Tuesday
2013-05-22  35.45   76.67   Wednesday
2013-05-23  29.43   79.05   Thursday
2013-05-24  33.51   78.53   Friday
2013-05-25  13.58   59.26   Saturday
2013-05-26  37.38   68.59   Sunday
2013-05-27  37.09   67.79   Monday
2013-05-28  21.70   70.54   Tuesday
2013-05-29  11.85   60.00   Wednesday

Code for regression analysis using statsmodels:

The following creates a linear regression model of B on A using sm.ols() (including a constant term using sm.add_constant())

import pandas as pd
import statsmodels.api as sm

df = pd.read_clipboard(sep='\\s+')
df = df.set_index(['Date'])

df['weekday'] =  df['weekday'].astype(object)
independent = df['B'].to_frame()
x = sm.add_constant(independent)

model = sm.OLS(df['A'], x).fit()
model.summary()

Output (shortened):

                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
const         -1.4328     17.355     -0.083      0.935       -37.252    34.386
B              0.4034      0.233      1.729      0.097        -0.078     0.885
==============================================================================

Now I'd like to add weekday as an explanatory factor variable. I was hoping it would be as easy as changing the data type in the dataframe, but unfortunately that doesn't seem to work although the column was accepted by the x = sm.add_constant(independent) part.

import pandas as pd
import statsmodels.api as sm

df = pd.read_clipboard(sep='\\s+')
df = df.set_index(['Date'])

df['weekday'] =  df['weekday'].astype(object)

independent = df[['B', 'weekday']]
x = sm.add_constant(independent)

model = sm.OLS(df['A'], x).fit()
model.summary()

When you come to the model = sm.OLS(df['A'], x).fit() part, a value error is raised:

ValueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

Any other suggestions?


回答1:


You can use pandas categorical to create the dummy variables, or, simpler, use the formula interface where patsy transforms all non-numeric columns to the dummy variables, or other factor encoding.

Using the formula interface in this case (same as lower case ols in statsmodels.formula.api) shows the result below. Patsy sorts levels of the categorical variable alphabetically. 'Friday' is missing in the list of variables and has been selected as reference category.

>>> res = sm.OLS.from_formula('A ~ B + weekday', df).fit()
>>> print(res.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      A   R-squared:                       0.301
Model:                            OLS   Adj. R-squared:                  0.029
Method:                 Least Squares   F-statistic:                     1.105
Date:                Thu, 03 May 2018   Prob (F-statistic):              0.401
Time:                        15:26:02   Log-Likelihood:                -97.898
No. Observations:                  26   AIC:                             211.8
Df Residuals:                      18   BIC:                             221.9
Df Model:                           7                                         
Covariance Type:            nonrobust                                         
========================================================================================
                           coef    std err          t      P>|t|      [0.025      0.975]
----------------------------------------------------------------------------------------
Intercept               -1.4717     19.343     -0.076      0.940     -42.110      39.167
weekday[T.Monday]        2.5837      9.857      0.262      0.796     -18.124      23.291
weekday[T.Saturday]     -6.5889      9.599     -0.686      0.501     -26.755      13.577
weekday[T.Sunday]        9.2287      9.616      0.960      0.350     -10.975      29.432
weekday[T.Thursday]     -1.7610     10.321     -0.171      0.866     -23.445      19.923
weekday[T.Tuesday]       2.6507      9.664      0.274      0.787     -17.652      22.953
weekday[T.Wendesday]    -6.9320      9.911     -0.699      0.493     -27.754      13.890
B                        0.4047      0.258      1.566      0.135      -0.138       0.948
==============================================================================
Omnibus:                        1.039   Durbin-Watson:                   2.313
Prob(Omnibus):                  0.595   Jarque-Bera (JB):                0.532
Skew:                          -0.350   Prob(JB):                        0.766
Kurtosis:                       3.007   Cond. No.                         638.
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

See patsy documentation for options for categorical encodings http://patsy.readthedocs.io/en/latest/categorical-coding.html

For example, the reference coding can be specified explicitly as in this formula

"A ~ B + C(weekday, Treatment('Sunday'))"

http://patsy.readthedocs.io/en/latest/API-reference.html#patsy.Treatment



来源:https://stackoverflow.com/questions/50155925/weekday-as-dummy-factor-variable-in-a-linear-regression-model-using-statsmodel

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!