问题
Given a dataframe, collapsing values into a set per group for a column is straightforward:
df.groupby('A')['B'].apply(set)
But how do you do it in a pythonic way if you want to do it on multiple columns and the result to be in a dataframe?
For example for the following dataframe:
import pandas as pd
df = pd.DataFrame({'user_id': [1, 2, 3, 4, 1, 2, 3],
'class_type': ['Krav Maga', 'Yoga', 'Ju-jitsu', 'Krav Maga', 'Ju-jitsu','Krav Maga', 'Karate'],
'instructor': ['Bob', 'Alice','Bob', 'Alice','Alice', 'Alice','Bob']})
The result wanted is the data frame below produced in a pythonic way:
|user_id|class_type |instructor |
|-------|-----------------------|---------------|
| 1 | {Krav Maga, Ju-jitsu} | {Bob, Alice} |
| 2 | {Krav Maga, Yoga} | {Alice} |
| 3 | {Karate, Ju-jitsu} | {Bob} |
| 4 | {Krav Maga} | {Alice} |
This is a dummy example. The question spurred from: "what if I have a table with 30 columns and I want to achieve this in a pythonic way?"
Currently I have a solution but I don't think is the best way to do it:
df[['grouped_B', 'grouped_C']] = df.groupby('A')[['B','C']].transform(set)
deduped_and_collapsed_df = df.groupby('A')[['A','grouped_B', 'grouped_C']].head(1)
Thank you in advance!
回答1:
In [11]: df.groupby('user_id', as_index=False).agg(lambda col: set(col.values.tolist()))
Out[11]:
user_id class_type instructor
0 1 {Krav Maga, Ju-jitsu} {Alice, Bob}
1 2 {Yoga, Krav Maga} {Alice}
2 3 {Ju-jitsu, Karate} {Bob}
3 4 {Krav Maga} {Alice}
or shorter version from @jezrael:
In [12]: df.groupby('user_id').agg(lambda x: set(x))
Out[12]:
class_type instructor
user_id
1 {Krav Maga, Ju-jitsu} {Alice, Bob}
2 {Yoga, Krav Maga} {Alice}
3 {Ju-jitsu, Karate} {Bob}
4 {Krav Maga} {Alice}
回答2:
Here is a collections.defaultdict
method. Pythonic is subjective.
This solution is certainly not Pandonic / Pandorable. Dataframes generally have large overheads when using groupby.agg
with lambda
, so you might find the below solution more efficient.
from collections import defaultdict
d_class, d_instr = defaultdict(set), defaultdict(set)
for row in df.itertuples():
idx, class_type, instructor, user_id = row
d_class[user_id].add(class_type)
d_instr[user_id].add(instructor)
res = pd.DataFrame([d_class, d_instr]).T.rename(columns={0: 'class_type', 1: 'instructor'})
Result:
class_type instructor
1 {Krav Maga, Ju-jitsu} {Bob, Alice}
2 {Krav Maga, Yoga} {Alice}
3 {Ju-jitsu, Karate} {Bob}
4 {Krav Maga} {Alice}
来源:https://stackoverflow.com/questions/49535966/what-is-the-pythonic-way-of-collapsing-values-into-a-set-for-multiple-columns-pe