How to get self into a Python method without explicitly accepting it

南笙酒味 提交于 2019-11-27 02:22:40

问题


I'm developing a documentation testing framework -- basically unit tests for PDFs. Tests are (decorated) methods of instances of classes defined by the framework, and these are located and instantiated at runtime and the methods are invoked to execute the tests.

My goal is to cut down on the amount of quirky Python syntax that the people who will write tests need to be concerned about, as these people may or may not be Python programmers, or even very much programmers at all. So I would like them to be able to write "def foo():" instead of "def foo(self):" for methods, but still be able to use "self" to access members.

In an ordinary program I would consider this a horrible idea, but in a domain-specific-languagey kind of program like this one, it seems worth a try.

I have successfully eliminated the self from the method signature by using a decorator (actually, since I am using a decorator already for the test cases, I would just roll it into that), but "self" does not then refer to anything in the test case method.

I have considered using a global for self, and even come up with an implementation that more or less works, but I'd rather pollute the smallest namespace possible, which is why I would prefer to inject the variable directly into the test case method's local namespace. Any thoughts?


回答1:


Here's a one line method decorator that seems to do the job without modifying any Special attributes of Callable types* marked Read-only:

# method decorator -- makes undeclared 'self' argument available to method
injectself = lambda f: lambda self: eval(f.func_code, dict(self=self))

class TestClass:
    def __init__(self, thing):
        self.attr = thing

    @injectself
    def method():
        print 'in TestClass::method(): self.attr = %r' % self.attr
        return 42

test = TestClass("attribute's value")
ret = test.method()
print 'return value:', ret

# output:
# in TestClass::method(): self.attr = "attribute's value"
# return value: 42

Note that unless you take precautions to prevent it, a side-effect of the eval() function may be it adding a few entries -- such as a reference to the __builtin__ module under the key __builtins__ -- automatically to the dict passed to it.

@kendall: Per your comment about how you're using this with methods being in container classes (but ignoring the injection of additional variables for the moment) -- is the following something like what you're doing? It's difficult for me to understand how things are split up between the framework and what the users write. It sounds like an interesting design pattern to me.

# method decorator -- makes undeclared 'self' argument available to method
injectself = lambda f: lambda self: eval(f.func_code, dict(self=self))

class methodclass:
    def __call__():
        print 'in methodclass::__call__(): self.attr = %r' % self.attr
        return 42

class TestClass:
    def __init__(self, thing):
        self.attr = thing

    method = injectself(methodclass.__call__)

test = TestClass("attribute's value")
ret = test.method()
print 'return value:', ret

# output
# in methodclass::__call__(): self.attr = "attribute's value"
# return value: 42



回答2:


little upgrade for aaronasterling's solution( i haven't enough reputation to comment it ):

def wrap(f):
    @functools.wraps(f)
    def wrapper(self,*arg,**kw):
        f.func_globals['self'] = self        
        return f(*arg,**kw)
    return wrapper

but both this solutions will work unpredictable if f function will be called recursively for different instance, so you have to clone it like this:

import types
class wrap(object):
    def __init__(self,func):
        self.func = func
    def __get__(self,obj,type):
        new_globals = self.func.func_globals.copy()
        new_globals['self'] = obj
        return types.FunctionType(self.func.func_code,new_globals)
class C(object):
    def __init__(self,word):
        self.greeting = word
    @wrap
    def greet(name):
        print(self.greeting+' , ' + name+ '!')
C('Hello').greet('kindall')



回答3:


My accepted answer to this question was pretty dumb but I was just starting out. Here's a much better way. This is only scantily tested but it's good for a demonstration of the proper way to do this thing which is improper to do. It works on 2.6.5 for sure. I haven't tested any other versions but no opcodes are hardcoded into it so it should be about as portable as most other 2.x code.

add_self can be applied as a decorator but that would defeat the purpose (why not just type 'self'?) It would be easy to adapt the metaclass from my other answer to apply this function instead.

import opcode
import types



def instructions(code):
    """Iterates over a code string yielding integer [op, arg] pairs

    If the opcode does not take an argument, just put None in the second part
    """
    code = map(ord, code)
    i, L = 0, len(code)
    extended_arg = 0
    while i < L:
        op = code[i]
        i+= 1
        if op < opcode.HAVE_ARGUMENT:
            yield [op, None]
            continue
        oparg = code[i] + (code[i+1] << 8) + extended_arg
        extended_arg = 0
        i += 2
        if op == opcode.EXTENDED_ARG:
            extended_arg = oparg << 16
            continue
        yield [op, oparg]


def write_instruction(inst):
    """Takes an integer [op, arg] pair and returns a list of character bytecodes"""
    op, oparg = inst
    if oparg is None:
        return [chr(op)]
    elif oparg <= 65536L:
        return [chr(op), chr(oparg & 255), chr((oparg >> 8) & 255)]
    elif oparg <= 4294967296L:
        # The argument is large enough to need 4 bytes and the EXTENDED_ARG opcode
        return [chr(opcode.EXTENDED_ARG),
                chr((oparg >> 16) & 255),
                chr((oparg >> 24) & 255),
                chr(op),
                chr(oparg & 255),
                chr((oparg >> 8) & 255)]
    else:
        raise ValueError("Invalid oparg: {0} is too large".format(oparg))


def add_self(f):
    """Add self to a method

    Creates a new function by prepending the name 'self' to co_varnames, and      
    incrementing co_argcount and co_nlocals. Increase the index of all other locals
    by 1 to compensate. Also removes 'self' from co_names and decrease the index of 
    all names that occur after it by 1. Finally, replace all occurrences of 
    `LOAD_GLOBAL i,j` that make reference to the old 'self' with 'LOAD_FAST 0,0'.   

    Essentially, just create a code object that is exactly the same but has one more
    argument. 
    """
    code_obj = f.func_code
    try:
        self_index = code_obj.co_names.index('self')
    except ValueError:
        raise NotImplementedError("self is not a global")

    # The arguments are just the first co_argcount co_varnames
    varnames = ('self', ) + code_obj.co_varnames   
    names = tuple(name for name in code_obj.co_names if name != 'self')

    code = []

    for inst in instructions(code_obj.co_code):
        op = inst[0]
        if op in opcode.haslocal:
            # The index is now one greater because we added 'self' at the head of
            # the tuple
            inst[1] += 1
        elif op in opcode.hasname:
            arg = inst[1]
            if arg == self_index:
                # This refers to the old global 'self'
                if op == opcode.opmap['LOAD_GLOBAL']:
                    inst[0] = opcode.opmap['LOAD_FAST']
                    inst[1] = 0
                else:
                    # If `self` is used as an attribute, real global, module
                    # name, module attribute, or gets looked at funny, bail out.
                    raise NotImplementedError("Abnormal use of self")
            elif arg > self_index:
                # This rewrites the index to account for the old global 'self'
                # having been removed.
                inst[1] -= 1

        code += write_instruction(inst)

    code = ''.join(code)

    # type help(types.CodeType) at the interpreter prompt for this one   
    new_code_obj = types.CodeType(code_obj.co_argcount + 1,
                                  code_obj.co_nlocals + 1,
                                  code_obj.co_stacksize,
                                  code_obj.co_flags, 
                                  code,
                                  code_obj.co_consts,
                                  names, 
                                  varnames, 
                                  '<OpcodeCity>',
                                  code_obj.co_name,  
                                  code_obj.co_firstlineno,
                                  code_obj.co_lnotab, 
                                  code_obj.co_freevars,
                                  code_obj.co_cellvars)


    # help(types.FunctionType)
    return types.FunctionType(new_code_obj, f.func_globals)



class Test(object):

    msg = 'Foo'

    @add_self
    def show(msg):
        print self.msg + msg


t = Test()
t.show('Bar')



回答4:


The trick is to add 'self' to f.func_globals. This works in python2.6. I really should get around to installing other versions to test stuff like this on. Sorry for the wall of code but I cover two cases: doing it with a metaclass and doing it with a decorator. For your usecase, I think the metaclass is better since the whole point of this exercise is to shield users from syntax.

import new, functools

class TestMeta(type):
    def __new__(meta, classname, bases, classdict):
        for item in classdict:
            if hasattr(classdict[item], '__call__'):
                classdict[item] = wrap(classdict[item])
        return type.__new__(meta, classname, bases, classdict)

def wrap(f):
    @functools.wraps(f)
    def wrapper(self):
        f.func_globals['self'] = self        
        return f()
    return wrapper

def testdec(f):
    @functools.wraps(f)
    def wrapper():
        return f()
    return wrapper

class Test(object):
    __metaclass__ = TestMeta
    message = 'You can do anything in python'
    def test():
        print self.message

    @testdec
    def test2():
        print self.message + ' but the wrapper funcion can\'t take a self argument either or you get a TypeError'

class Test2(object):
    message = 'It also works as a decorator but (to me at least) feels better as a metaclass'
    @wrap
    def test():
        print self.message


t = Test()
t2 = Test2()
t.test()
t.test2()
t2.test()



回答5:


This might be a use case for decorators - you give them a small set of lego bricks to build functions with, and the complicated framework stuff is piped in via @testcase or somesuch.

Edit: You didn't post any code, so this is going to be sketchy, but they don't need to write methods. They can write ordinary functions without "self", and you could use decorators like in this example from the article I linked:

class myDecorator(object):

    def __init__(self, f):
        print "inside myDecorator.__init__()"
        f() # Prove that function definition has completed

    def __call__(self):
        print "inside myDecorator.__call__()"

@myDecorator
def aFunction():
    print "inside aFunction()"


来源:https://stackoverflow.com/questions/3453976/how-to-get-self-into-a-python-method-without-explicitly-accepting-it

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!