问题
I have a definition with the following type:
insert : ∀ {n} → (i : Fin (suc n)) → ∀ t → Env n → Env (suc n)
weaken : ∀ {t t₀ n} {Γ : Env n} → (i : Fin (suc n)) → (e : Γ ⊢ t₀) → (insert i t Γ) ⊢ t₀
Given two environments Γ : Env n and Γ′ : Env n′, and a pointer to a position in the second one, i : Fin (suc n), I would like to weaken an e : (Γ′ ++ Γ) ⊢ t₀.
In theory, this should be easy by using something like
let i′ = raise n′ i
weaken {t} i′ e : insert i′ t (Γ′ ++ Γ) ⊢ t₀
However, in practice it doesn't work out so nicely, because the typechecker is not convinced that raise n′ i has type Fin (suc _) (required by weaken):
(n′ + suc n)!=(suc (_n_550 i e))of typeℕwhen checking that the expressioni′has typeFin (suc (_n_550 i e))
My problem is, I could use something like +-suc : ∀ n′ n → n′ + suc n ≡ suc (n′ + n) to substitute the type of i′, but then the resulting type from weaken i′ e will not have the form insert i′ t (Γ′ ++ Γ) ⊢ t₀.
回答1:
Given two environments
Γ : Env nandΓ′ : Env n′
Those are contexts.
It should be possible to change the type of insert to
data Bound : ℕ -> Set where
zero : ∀ {n} -> Bound n
suc : ∀ {n} -> Bound n -> Bound (suc n)
insert : ∀ {n} → (i : Bound n) → ∀ t → Env n → Env (suc n)
without changing the body of the function.
You can write a version of raise that raises under suc:
raise′ : ∀ {m} n → Fin (suc m) → Fin (suc (n + m))
raise′ zero i = i
raise′ (suc n) i = suc (raise′ n i)
But the actual solution is to rename terms using either functions:
Ren : Con -> Con -> Set
Ren Γ Δ = ∀ {σ} -> σ ∈ Γ -> σ ∈ Δ
keepʳ : ∀ {Γ Δ σ} -> Ren Γ Δ -> Ren (Γ ▻ σ) (Δ ▻ σ)
keepʳ r vz = vz
keepʳ r (vs v) = vs (r v)
ren : ∀ {Γ Δ σ} -> Ren Γ Δ -> Γ ⊢ σ -> Δ ⊢ σ
ren r (var v) = var (r v)
ren r (ƛ b ) = ƛ (ren (keepʳ r) b)
ren r (f · x) = ren r f · ren r x
or order preserving embeddings.
来源:https://stackoverflow.com/questions/34012646/using-subst-in-an-application-would-screw-up-type-of-the-result