问题
Let's say I have a large dataframe large that has a MultiIndex on the rows. I pare down this dataframe by selecting only some of the rows and assign the result to small. In particular, small has fewer distinct values in the 0th level of its MultiIndex on the rows than large.
I then want a list of the distinct values in the 0th level of the MultiIndex on the rows of small so I call small.index.levels[0]. The result is strange: it returns the same thing as large.index.levels[0] despite the fact that there should be fewer values.
What's going on?
MWE:
import pandas as pd
import numpy as np
np.random.seed(0)
idx = pd.MultiIndex.from_product([['John', 'Josh', 'Alex'], list('abcde')],
names=['Person', 'Letter'])
large = pd.DataFrame(data=np.random.randn(15, 2),
index=idx,
columns=['one', 'two'])
small = large.loc[['Jo'==d[0:2] for d in large.index.get_level_values('Person')]]
print small.index.levels[0]
print large.index.levels[0]
Output:
Index([u'Alex', u'John', u'Josh'], dtype='object')
Index([u'Alex', u'John', u'Josh'], dtype='object')
Expected output:
Index([u'John', u'Josh'], dtype='object')
Index([u'Alex', u'John', u'Josh'], dtype='object')
回答1:
More efficient to do this.
In [43]: large[large.index.get_level_values('Person').to_series().str.startswith('Jo').values]
Out[43]:
one two
Person Letter
John a 1.764052 0.400157
b 0.978738 2.240893
c 1.867558 -0.977278
d 0.950088 -0.151357
e -0.103219 0.410599
Josh a 0.144044 1.454274
b 0.761038 0.121675
c 0.443863 0.333674
d 1.494079 -0.205158
e 0.313068 -0.854096
To answer your question. That is an implementation detail. Use .get_level_values() (rather than accessing the internal .levels
You can do this if you want.
In [13]: small.index.get_level_values('Person').unique()
Out[13]: array(['John', 'Josh'], dtype=object)
In [14]: large.index.get_level_values('Person').unique()
Out[14]: array(['John', 'Josh', 'Alex'], dtype=object)
来源:https://stackoverflow.com/questions/24434724/dataframe-index-levels-shows-extra-values-after-paring-down-dataframe