问题
With the new range-based for loop we can write code like
for(auto x: Y) {}
Which IMO is a huge improvement from (for ex.)
for(std::vector<int>::iterator x=Y.begin(); x!=Y.end(); ++x) {}
Can it be used to loop over two simultaneous loops, like Pythons zip
function? For those unfamiliar with Python, the code:
Y1 = [1,2,3]
Y2 = [4,5,6,7]
for x1,x2 in zip(Y1,Y2):
print x1,x2
Gives as output (1,4) (2,5) (3,6)
回答1:
Warning: boost::zip_iterator
and boost::combine
as of Boost 1.63.0 (2016 Dec 26) will cause undefined behavior if the length of the input containers are not the same (it may crash or iterate beyond the end).
Starting from Boost 1.56.0 (2014 Aug 7) you could use boost::combine (the function exists in earlier versions but undocumented):
#include <boost/range/combine.hpp>
#include <vector>
#include <list>
#include <string>
int main() {
std::vector<int> a {4, 5, 6};
double b[] = {7, 8, 9};
std::list<std::string> c {"a", "b", "c"};
for (auto tup : boost::combine(a, b, c, a)) { // <---
int x, w;
double y;
std::string z;
boost::tie(x, y, z, w) = tup;
printf("%d %g %s %d\n", x, y, z.c_str(), w);
}
}
This would print
4 7 a 4 5 8 b 5 6 9 c 6
In earlier versions, you could define a range yourself like this:
#include <boost/iterator/zip_iterator.hpp>
#include <boost/range.hpp>
template <typename... T>
auto zip(T&&... containers) -> boost::iterator_range<boost::zip_iterator<decltype(boost::make_tuple(std::begin(containers)...))>>
{
auto zip_begin = boost::make_zip_iterator(boost::make_tuple(std::begin(containers)...));
auto zip_end = boost::make_zip_iterator(boost::make_tuple(std::end(containers)...));
return boost::make_iterator_range(zip_begin, zip_end);
}
The usage is the same.
回答2:
You can use a solution based on boost::zip_iterator
. Make a phony container class maintaining references to your containers, and which return zip_iterator
from the begin
and end
member functions. Now you can write
for (auto p: zip(c1, c2)) { ... }
Example implementation (please test):
#include <iterator>
#include <boost/iterator/zip_iterator.hpp>
template <typename C1, typename C2>
class zip_container
{
C1* c1; C2* c2;
typedef boost::tuple<
decltype(std::begin(*c1)),
decltype(std::begin(*c2))
> tuple;
public:
zip_container(C1& c1, C2& c2) : c1(&c1), c2(&c2) {}
typedef boost::zip_iterator<tuple> iterator;
iterator begin() const
{
return iterator(std::begin(*c1), std::begin(*c2));
}
iterator end() const
{
return iterator(std::end(*c1), std::end(*c2));
}
};
template <typename C1, typename C2>
zip_container<C1, C2> zip(C1& c1, C2& c2)
{
return zip_container<C1, C2>(c1, c2);
}
I leave the variadic version as an excellent exercise to the reader.
回答3:
See <redi/zip.h> for a zip
function which works with range-base for
and accepts any number of ranges, which can be rvalues or lvalues and can be different lengths (iteration will stop at the end of the shortest range).
std::vector<int> vi{ 0, 2, 4 };
std::vector<std::string> vs{ "1", "3", "5", "7" };
for (auto i : redi::zip(vi, vs))
std::cout << i.get<0>() << ' ' << i.get<1>() << ' ';
Prints 0 1 2 3 4 5
回答4:
So I wrote this zip before when I was bored, I decided to post it because it's different than the others in that it doesn't use boost and looks more like the c++ stdlib.
template <typename Iterator>
void advance_all (Iterator & iterator) {
++iterator;
}
template <typename Iterator, typename ... Iterators>
void advance_all (Iterator & iterator, Iterators& ... iterators) {
++iterator;
advance_all(iterators...);
}
template <typename Function, typename Iterator, typename ... Iterators>
Function zip (Function func, Iterator begin,
Iterator end,
Iterators ... iterators)
{
for(;begin != end; ++begin, advance_all(iterators...))
func(*begin, *(iterators)... );
//could also make this a tuple
return func;
}
Example use:
int main () {
std::vector<int> v1{1,2,3};
std::vector<int> v2{3,2,1};
std::vector<float> v3{1.2,2.4,9.0};
std::vector<float> v4{1.2,2.4,9.0};
zip (
[](int i,int j,float k,float l){
std::cout << i << " " << j << " " << k << " " << l << std::endl;
},
v1.begin(),v1.end(),v2.begin(),v3.begin(),v4.begin());
}
回答5:
With range-v3:
#include <range/v3/all.hpp>
#include <vector>
#include <iostream>
namespace ranges {
template <class T, class U>
std::ostream& operator << (std::ostream& os, common_pair<T, U> const& p)
{
return os << '(' << p.first << ", " << p.second << ')';
}
}
using namespace ranges::v3;
int main()
{
std::vector<int> a {4, 5, 6};
double b[] = {7, 8, 9};
std::cout << view::zip(a, b) << std::endl;
}
The output:
[(4, 7),(5, 8),(6, 9)]
回答6:
std::transform can do this trivially:
std::vector<int> a = {1,2,3,4,5};
std::vector<int> b = {1,2,3,4,5};
std::vector<int>c;
std::transform(a.begin(),a.end(), b.begin(),
std::back_inserter(c),
[](const auto& aa, const auto& bb)
{
return aa*bb;
});
for(auto cc:c)
std::cout<<cc<<std::endl;
If the second sequence is shorter, my implementation seems to be giving default initialized values.
回答7:
I ran into this same question independently and didn't like the syntax of any of the above. So, I have a short header file that essentially does the same as the boost zip_iterator but has a few macros to make the syntax more palatable to me:
https://github.com/cshelton/zipfor
For example you can do
vector<int> a {1,2,3};
array<string,3> b {"hello","there","coders"};
zipfor(i,s eachin a,b)
cout << i << " => " << s << endl;
The main syntactic sugar is that I can name the elements from each container. I also include a "mapfor" that does the same, but for maps (to name the ".first" and ".second" of the element).
回答8:
// declare a, b
BOOST_FOREACH(boost::tie(a, b), boost::combine(list_of_a, list_of_b)){
// your code here.
}
回答9:
If you like operator overloading, here are three possibilities. The first two are using std::pair<>
and std::tuple<>
, respectively, as iterators; the third extends this to range-based for
. Note that not everyone will like these definitions of the operators, so it's best to keep them in a separate namespace and have a using namespace
in the functions (not files!) where you'd like to use these.
#include <iostream>
#include <utility>
#include <vector>
#include <tuple>
// put these in namespaces so we don't pollute global
namespace pair_iterators
{
template<typename T1, typename T2>
std::pair<T1, T2> operator++(std::pair<T1, T2>& it)
{
++it.first;
++it.second;
return it;
}
}
namespace tuple_iterators
{
// you might want to make this generic (via param pack)
template<typename T1, typename T2, typename T3>
auto operator++(std::tuple<T1, T2, T3>& it)
{
++( std::get<0>( it ) );
++( std::get<1>( it ) );
++( std::get<2>( it ) );
return it;
}
template<typename T1, typename T2, typename T3>
auto operator*(const std::tuple<T1, T2, T3>& it)
{
return std::tie( *( std::get<0>( it ) ),
*( std::get<1>( it ) ),
*( std::get<2>( it ) ) );
}
// needed due to ADL-only lookup
template<typename... Args>
struct tuple_c
{
std::tuple<Args...> containers;
};
template<typename... Args>
auto tie_c( const Args&... args )
{
tuple_c<Args...> ret = { std::tie(args...) };
return ret;
}
template<typename T1, typename T2, typename T3>
auto begin( const tuple_c<T1, T2, T3>& c )
{
return std::make_tuple( std::get<0>( c.containers ).begin(),
std::get<1>( c.containers ).begin(),
std::get<2>( c.containers ).begin() );
}
template<typename T1, typename T2, typename T3>
auto end( const tuple_c<T1, T2, T3>& c )
{
return std::make_tuple( std::get<0>( c.containers ).end(),
std::get<1>( c.containers ).end(),
std::get<2>( c.containers ).end() );
}
// implement cbegin(), cend() as needed
}
int main()
{
using namespace pair_iterators;
using namespace tuple_iterators;
std::vector<double> ds = { 0.0, 0.1, 0.2 };
std::vector<int > is = { 1, 2, 3 };
std::vector<char > cs = { 'a', 'b', 'c' };
// classical, iterator-style using pairs
for( auto its = std::make_pair(ds.begin(), is.begin()),
end = std::make_pair(ds.end(), is.end() ); its != end; ++its )
{
std::cout << "1. " << *(its.first ) + *(its.second) << " " << std::endl;
}
// classical, iterator-style using tuples
for( auto its = std::make_tuple(ds.begin(), is.begin(), cs.begin()),
end = std::make_tuple(ds.end(), is.end(), cs.end() ); its != end; ++its )
{
std::cout << "2. " << *(std::get<0>(its)) + *(std::get<1>(its)) << " "
<< *(std::get<2>(its)) << " " << std::endl;
}
// range for using tuples
for( const auto& d_i_c : tie_c( ds, is, cs ) )
{
std::cout << "3. " << std::get<0>(d_i_c) + std::get<1>(d_i_c) << " "
<< std::get<2>(d_i_c) << " " << std::endl;
}
}
回答10:
If you have a C++14 compliant compiler (e.g. gcc5) you can use zip
provided in the cppitertools library by Ryan Haining, which looks really promising:
array<int,4> i{{1,2,3,4}};
vector<float> f{1.2,1.4,12.3,4.5,9.9};
vector<string> s{"i","like","apples","alot","dude"};
array<double,5> d{{1.2,1.2,1.2,1.2,1.2}};
for (auto&& e : zip(i,f,s,d)) {
cout << std::get<0>(e) << ' '
<< std::get<1>(e) << ' '
<< std::get<2>(e) << ' '
<< std::get<3>(e) << '\n';
std::get<1>(e)=2.2f; // modifies the underlying 'f' array
}
回答11:
For a C++ stream processing library I'm writing I was looking for a solution that doesn't rely on third party libraries and works with an arbitrary number of containers. I ended up with this solution. It's similar to the accepted solution which uses boost (and also results in undefined behavior if the container lengths are not equal)
#include <utility>
namespace impl {
template <typename Iter, typename... Iters>
class zip_iterator {
public:
using value_type = std::tuple<const typename Iter::value_type&,
const typename Iters::value_type&...>;
zip_iterator(const Iter &head, const Iters&... tail)
: head_(head), tail_(tail...) { }
value_type operator*() const {
return std::tuple_cat(std::tuple<const typename Iter::value_type&>(*head_), *tail_);
}
zip_iterator& operator++() {
++head_; ++tail_;
return *this;
}
bool operator==(const zip_iterator &rhs) const {
return head_ == rhs.head_ && tail_ == rhs.tail_;
}
bool operator!=(const zip_iterator &rhs) const {
return !(*this == rhs);
}
private:
Iter head_;
zip_iterator<Iters...> tail_;
};
template <typename Iter>
class zip_iterator<Iter> {
public:
using value_type = std::tuple<const typename Iter::value_type&>;
zip_iterator(const Iter &head) : head_(head) { }
value_type operator*() const {
return value_type(*head_);
}
zip_iterator& operator++() { ++head_; return *this; }
bool operator==(const zip_iterator &rhs) const { return head_ == rhs.head_; }
bool operator!=(const zip_iterator &rhs) const { return !(*this == rhs); }
private:
Iter head_;
};
} // namespace impl
template <typename Iter>
class seq {
public:
using iterator = Iter;
seq(const Iter &begin, const Iter &end) : begin_(begin), end_(end) { }
iterator begin() const { return begin_; }
iterator end() const { return end_; }
private:
Iter begin_, end_;
};
/* WARNING: Undefined behavior if iterator lengths are different.
*/
template <typename... Seqs>
seq<impl::zip_iterator<typename Seqs::iterator...>>
zip(const Seqs&... seqs) {
return seq<impl::zip_iterator<typename Seqs::iterator...>>(
impl::zip_iterator<typename Seqs::iterator...>(std::begin(seqs)...),
impl::zip_iterator<typename Seqs::iterator...>(std::end(seqs)...));
}
回答12:
Boost.Iterators has zip_iterator you can use (example's in the docs). It won't work with range for, but you can use std::for_each
and a lambda.
回答13:
Here is a simple version that does not require boost. It won't be particularly efficient as it creates temporary values, and it does not generalise over containers other than lists, but it has no dependencies and it solves the most common case for zipping.
template<class L, class R>
std::list< std::pair<L,R> > zip(std::list<L> left, std::list<R> right)
{
auto l = left.begin();
auto r = right.begin();
std::list< std::pair<L,R> > result;
while( l!=left.end() && r!=right.end() )
result.push_back( std::pair<L,R>( *(l++), *(r++) ) );
return result;
}
Although the other versions are more flexible, often the point of using a list operator is make a simple one-liner. This version has the benefit that the common-case is simple.
来源:https://stackoverflow.com/questions/8511035/sequence-zip-function-for-c11