问题
I have a pandas dataframe looking like this:
Name start end
A 2000-01-10 1970-04-29
I want to add a new column providing the difference between the start
and end
column in years, months, days.
So the result should look like:
Name start end diff
A 2000-01-10 1970-04-29 29y9m etc.
the diff column may also be a datetime
object or a timedelta
object, but the key point for me is, that I can easily get the Year and Month out of it.
What I tried until now is:
df['diff'] = df['end'] - df['start']
This results in the new column containing 10848 days
. However, I do not know how to convert the days to 29y9m etc.
回答1:
With a simple function you can reach your goal.
The function calculates the years difference and the months difference with a simple calculation.
import pandas as pd
import datetime
def parse_date(td):
resYear = float(td.days)/364.0 # get the number of years including the the numbers after the dot
resMonth = int((resYear - int(resYear))*364/30) # get the number of months, by multiply the number after the dot by 364 and divide by 30.
resYear = int(resYear)
return str(resYear) + "Y" + str(resMonth) + "m"
df = pd.DataFrame([("2000-01-10", "1970-04-29")], columns=["start", "end"])
df["delta"] = [parse_date(datetime.datetime.strptime(start, '%Y-%m-%d') - datetime.datetime.strptime(end, '%Y-%m-%d')) for start, end in zip(df["start"], df["end"])]
print df
start end delta
0 2000-01-10 1970-04-29 29Y9m
回答2:
Pretty much straightforward with relativedelta
:
from dateutil import relativedelta
>> end start
>> 0 1970-04-29 2000-01-10
for i in df.index:
df.at[i, 'diff'] = relativedelta.relativedelta(df.ix[i, 'start'], df.ix[i, 'end'])
>> end start diff
>> 0 1970-04-29 2000-01-10 relativedelta(years=+29, months=+8, days=+12)
回答3:
I think this is the most 'pandas' way to do it, without using any for loops or defining external functions:
>>> df = pd.DataFrame({'Name': ['A'], 'start': [datetime(2000, 1, 10)], 'end': [datetime(1970, 4, 29)]})
>>> df['diff'] = map(lambda td: datetime(1, 1, 1) + td, list(df['start'] - df['end']))
>>> df['diff'] = df['diff'].apply(lambda d: '{0}y{1}m'.format(d.year - 1, d.month - 1))
>>> df
Name end start diff
0 A 1970-04-29 2000-01-10 29y8m
Had to use map instead of apply because of pandas' timedelda64, which doesn't allow a simple addition to a datetime object.
回答4:
A much simpler way is to use date_range function and calculate length of the same
startdt=pd.to_datetime('2017-01-01')
enddt = pd.to_datetime('2018-01-01')
len(pd.date_range(start=startdt,end=enddt,freq='M'))
回答5:
You can try the following function to calculate the difference -
def yearmonthdiff(row):
s = row['start']
e = row['end']
y = s.year - e.year
m = s.month - e.month
d = s.day - e.day
if m < 0:
y = y - 1
m = m + 12
if m == 0:
if d < 0:
m = m -1
elif d == 0:
s1 = s.hour*3600 + s.minute*60 + s.second
s2 = e.hour*3600 + e.minut*60 + e.second
if s1 < s2:
m = m - 1
return '{}y{}m'.format(y,m)
Where row is the dataframe row
. I am assuming your start
and end
columns are datetime
objects. Then you can use DataFrame.apply()
function to apply it to each row.
df
Out[92]:
start end
0 2000-01-10 00:00:00.000000 1970-04-29 00:00:00.000000
1 2015-07-18 17:54:59.070381 2014-01-11 17:55:10.053381
df['diff'] = df.apply(yearmonthdiff, axis=1)
In [97]: df
Out[97]:
start end diff
0 2000-01-10 00:00:00.000000 1970-04-29 00:00:00.000000 29y9m
1 2015-07-18 17:54:59.070381 2014-01-11 17:55:10.053381 1y6m
回答6:
Similar to @DeepSpace's answer, here's a SAS-like implementation:
import pandas as pd
from dateutil import relativedelta
def intck_month( start, end ):
rd = relativedelta.relativedelta( pd.to_datetime( end ), pd.to_datetime( start ) )
return rd.years, rd.months
Usage:
>> years, months = intck_month('1960-01-01', '1970-03-01')
>> print(years)
10
>> print(months)
2
来源:https://stackoverflow.com/questions/31490816/calculate-datetime-difference-in-years-months-etc-in-a-new-pandas-dataframe-c