Python pandas, how to truncate DatetimeIndex and fill missing data only in certain interval

冷暖自知 提交于 2019-12-09 06:40:28
  1. for each date in the DataFrame truncate to only have data in the range of 9:00:00AM - 11:30:00AM and 13:00:00 - 15:15:00

Use index slicing for that, e.g.:

df = df[start_timestamp:end_timestamp]
  1. with the range in 1., fill missing data with a frequency of 500 milliseconds

Generate a new dataframe with an index at 500 msec. Merge this dataframe with the original one using outer join. This gets you a dataframe with rows at regular intervals. Rows for missing observations will contain NaN values. Then fill missing NaN values with fillna.

Example:

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: data = pd.DataFrame({"value": np.arange(5)}, index=pd.date_range("2013/02/03", periods=5, freq="3Min"))

In [4]: data
Out[4]: 
                     value
2013-02-03 00:00:00      0
2013-02-03 00:03:00      1
2013-02-03 00:06:00      2
2013-02-03 00:09:00      3
2013-02-03 00:12:00      4

In [5]: filler = pd.DataFrame({"value": [100] * 15}, index=pd.date_range("2013/02/03", periods=15, freq="1Min"))                                                                           

In [6]: filler
Out[6]: 
                     value
2013-02-03 00:00:00    100
2013-02-03 00:01:00    100
2013-02-03 00:02:00    100
2013-02-03 00:03:00    100
2013-02-03 00:04:00    100
2013-02-03 00:05:00    100
2013-02-03 00:06:00    100
2013-02-03 00:07:00    100
2013-02-03 00:08:00    100
2013-02-03 00:09:00    100
2013-02-03 00:10:00    100
2013-02-03 00:11:00    100
2013-02-03 00:12:00    100
2013-02-03 00:13:00    100
2013-02-03 00:14:00    100

In [7]: merged = filler.merge(data, how='left', left_index=True, right_index=True)                                                                                                         

In [8]: merged["value"] = np.where(np.isfinite(merged.value_y), merged.value_y, merged.value_x)                                                                                            

In [9]: merged
Out[9]: 
                     value_x  value_y  value
2013-02-03 00:00:00      100        0      0
2013-02-03 00:01:00      100      NaN    100
2013-02-03 00:02:00      100      NaN    100
2013-02-03 00:03:00      100        1      1
2013-02-03 00:04:00      100      NaN    100
2013-02-03 00:05:00      100      NaN    100
2013-02-03 00:06:00      100        2      2
2013-02-03 00:07:00      100      NaN    100
2013-02-03 00:08:00      100      NaN    100
2013-02-03 00:09:00      100        3      3
2013-02-03 00:10:00      100      NaN    100
2013-02-03 00:11:00      100      NaN    100
2013-02-03 00:12:00      100        4      4
2013-02-03 00:13:00      100      NaN    100
2013-02-03 00:14:00      100      NaN    100

In [10]: merged['2013-02-03 00:01:00':'2013-02-03 00:10:00']                                                                                                                                
Out[10]: 
                     value_x  value_y  value
2013-02-03 00:01:00      100      NaN    100
2013-02-03 00:02:00      100      NaN    100
2013-02-03 00:03:00      100        1      1
2013-02-03 00:04:00      100      NaN    100
2013-02-03 00:05:00      100      NaN    100
2013-02-03 00:06:00      100        2      2
2013-02-03 00:07:00      100      NaN    100
2013-02-03 00:08:00      100      NaN    100
2013-02-03 00:09:00      100        3      3
2013-02-03 00:10:00      100      NaN    100
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!