Handling categorical features using scikit-learn

孤者浪人 提交于 2019-12-08 02:49:55

问题


What am I doing?

I am solving a classification problem using Random Forests. I have a set of strings of a fixed length (10 characters long) that represent DNA sequences. DNA alphabet consists of 4 letters, namely A, C, G, T.

Here's a sample of my raw data:

ATGCTACTGA
ACGTACTGAT
AGCTATTGTA
CGTGACTAGT
TGACTATGAT

Each DNA sequence comes with experimental data describing a real biological response; the molecule was seen to elicit biological response (1), or not (0).

Problem:

The training set consists of both, categorical (nominal) and numerical features. It is of the following structure:

training_set = [
  {'p1':'A', 'p2':'T', 'p3':'G', 'p4':'C', 'p5':'T', 
   'p6':'A', 'p7':'C', 'p8':'T', 'p9':'G', 'p10':'A', 
   'mass':370.2, 'temp':70.0},
  {'p1':'A', 'p2':'C', 'p3':'G', 'p4':'T', 'p5':'A', 
   'p6':'C', 'p7':'T', 'p8':'G', 'p9':'A', 'p10':'T', 
   'mass':400.3, 'temp':67.2},
]

target = [1, 0]

I successfully create the classifier using the DictVectorizer class to encode nominal features, but I'm having problems while performing predictions on my testing data.

Below is the simplified version of my code accomplished so far:

from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import DictVectorizer

training_set = [
  {'p1':'A', 'p2':'T', 'p3':'G', 'p4':'C', 'p5':'T', 
   'p6':'A', 'p7':'C', 'p8':'T', 'p9':'G', 'p10':'A', 
   'mass':370.2, 'temp':70.0},
  {'p1':'A', 'p2':'C', 'p3':'G', 'p4':'T', 'p5':'A', 
   'p6':'C', 'p7':'T', 'p8':'G', 'p9':'A', 'p10':'T', 
   'mass':400.3, 'temp':67.2},
]

target = [1, 0]

vec = DictVectorizer()
train = vec.fit_transform(training_set).toarray()

clf = RandomForestClassifier(n_estimators=1000)
clf = clf.fit(train, target)


# The following part fails.
test_set =   {
  'p1':'A', 'p2':'T', 'p3':'G', 'p4':'C', 'p5':'T', 
  'p6':'A', 'p7':'C', 'p8':'T', 'p9':'G', 'p10':'A', 
  'mass':370.2, 'temp':70.0}
vec = DictVectorizer()
test = vec.fit_transform(test_set).toarray()
print clf.predict_proba(test)

As a result, I got an error:

ValueError: Number of features of the model must  match the input. 
Model n_features is 20 and  input n_features is 12

回答1:


You should use the same DictVectorizer object which created the train dataset to transform the test_set:

from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import DictVectorizer

training_set = [
  {'p1':'A', 'p2':'T', 'p3':'G', 'p4':'C', 'p5':'T', 
   'p6':'A', 'p7':'C', 'p8':'T', 'p9':'G', 'p10':'A', 
   'mass':370.2, 'temp':70.0},
  {'p1':'A', 'p2':'C', 'p3':'G', 'p4':'T', 'p5':'A', 
   'p6':'C', 'p7':'T', 'p8':'G', 'p9':'A', 'p10':'T', 
   'mass':400.3, 'temp':67.2},
]

target = [1, 0]

vec = DictVectorizer()
train = vec.fit_transform(training_set).toarray()

clf = RandomForestClassifier(n_estimators=1000)
clf = clf.fit(train, target)


# The following part fails.
test_set =   {
  'p1':'A', 'p2':'T', 'p3':'G', 'p4':'C', 'p5':'T', 
  'p6':'A', 'p7':'C', 'p8':'T', 'p9':'G', 'p10':'A', 
  'mass':370.2, 'temp':70.0}

test = vec.transform(test_set).toarray()
print clf.predict_proba(test)


来源:https://stackoverflow.com/questions/21362427/handling-categorical-features-using-scikit-learn

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!