题意:
Today at the lesson Vitya learned a very interesting function — mex. Mex of a sequence of numbers is the minimum non-negative number that is not present in the sequence as element. For example, mex([4, 33, 0, 1, 1, 5]) = 2 and mex([1, 2, 3]) = 0.
Vitya quickly understood all tasks of the teacher, but can you do the same?
You are given an array consisting of n non-negative integers, and m queries. Each query is characterized by one number x and consists of the following consecutive steps:
- Perform the bitwise addition operation modulo 2 (xor) of each array element with the number x.
- Find mex of the resulting array.
Note that after each query the array changes.
Input
First line contains two integer numbers n and m (1 ≤ n, m ≤ 3·105) — number of elements in array and number of queries.
Next line contains n integer numbers ai (0 ≤ ai ≤ 3·105) — elements of then array.
Each of next m lines contains query — one integer number x (0 ≤ x ≤ 3·105).
Output
For each query print the answer on a separate line.
Examples
2 21 313
10
4 30 1 5 6124
200
5 40 1 5 6 71145
2202
题意:
找出来这n个数中没有的最小自然数
之后有m次对数组的处理(设m行每行输入的数为x),让数组里面的所有数都和x异或。然后输出这n个数中没有的最小自然数
注释+代码:
1 /*
2 将所有的数字以二进制的方式插入到 trie 树中,然后我们便可以很方便的求出一个序列的 mex 值。
3 假如要全局异或一个数 x ,且 x 的二进制从高到低第 i 位是 1 ,则 trie 树中的第 i 层所有节点都要翻转左右孩子。
4
5 为什么遇到1要翻转,遇到0不需要?
6 如果是0的话,那么原来数是0,异或之后结果还是0;如果原来数是1,异或之后结果还是1
7
8 并且x^y^z=x^(y^z)
9 */
10 #include <iostream>
11 #include <cstdio>
12 #include <cstring>
13 #include <cstdlib>
14 #include <algorithm>
15 using namespace std;
16 typedef long long ll;
17 const int maxn=20;
18 const int mod=998244353;
19 const int N=3e5+10;
20 typedef struct Trie* TrieNode;
21 int v[N];
22 struct Trie
23 {
24 int val,sum;
25 TrieNode next[2];
26 Trie()
27 {
28 val=0;
29 sum=0;
30 memset(next,NULL,sizeof(next));
31 }
32 };
33 void inserts(TrieNode root,int x)
34 {
35 TrieNode p = root;
36 for(int i=maxn;i>=0;--i)
37 {
38 int temp=(x>>i)&1;
39 if(p->next[temp]==NULL) p->next[temp]=new struct Trie();//printf("*%d*",temp);
40 //p->next[temp]->sum+=1;
41 p=p->next[temp];
42 p->sum+=1;
43 }
44 }
45 void update(TrieNode p,int x)
46 {
47 for(int i=0;i<2;++i)
48 if(p->next[i]!=NULL)
49 p->next[i]->val^=p->val; //这个p->next[i]->val为什么要异或?
50 if((p->val>>x)&1) //因为我们每一次只能走字典树的一个方向,所以另一个方向是没有异或过这个x的,所以报
51 swap(p->next[0],p->next[1]); //保留下来,和线段树的懒惰标记差不多
52 p->val=0;
53 }
54 void query(TrieNode root,int x)
55 {
56 int ans=0;
57 TrieNode p=root;
58 for(int i=maxn;i>=0;i--)
59 {
60 update(p,i);
61 if(p->next[0]==NULL || p->next[0]->sum!=(1<<i)) //(1<<i)代表另一个树枝上所有数都存在时的个数
62 p=p->next[0]; //因为咱们时从二进制数的高位枚举到低位,所以遇到能走的零就要走
63 else p=p->next[1],ans|=1<<i;
64 if(p==NULL) break;
65 }
66 printf("%d\n",ans);
67 }
68 void Del(TrieNode root)
69 {
70 for(ll i=0 ; i<2 ; ++i)
71 {
72 if(root->next[i])Del(root->next[i]);
73 }
74 delete(root);
75 }
76 int main()
77 {
78 int n,m;
79 scanf("%d%d",&n,&m);
80 for(int i=0;i<n;++i)
81 scanf("%d",&v[i]);
82 sort(v,v+n);
83 TrieNode root=new struct Trie();
84 inserts(root,v[0]);
85 for(int i=1;i<n;++i)
86 {
87 if(v[i]!=v[i-1])
88 inserts(root,v[i]);
89 }
90 while(m--)
91 {
92 int x;
93 scanf("%d",&x);
94 root->val=x; //每一次都要
95 query(root,x);
96 }
97 Del(root);
98 return 0;
99 }