问题
Alright, so maybe I shouldn't have shrunk this question sooo much... I have seen the post on the most efficient way to find the first 10000 primes. I'm looking for all possible ways. The goal is to have a one stop shop for primality tests. Any and all tests people know for finding prime numbers are welcome.
And so:
- What are all the different ways of finding primes?
回答1:
Some prime tests only work with certain numbers, for instance, the Lucas–Lehmer test only works for Mersenne numbers.
Most prime tests used for big numbers can only tell you that a certain number is "probably prime" (or, if the number fails the test, it is definitely not prime). Usually you can continue the algorithm until you have a very high probability of a number being prime.
Have a look at this page and especially its "See Also" section.
The Miller-Rabin test is, I think, one of the best tests. In its standard form it gives you probable primes - though it has been shown that if you apply the test to a number beneath 3.4*10^14, and it passes the test for each parameter 2, 3, 5, 7, 11, 13 and 17, it is definitely prime.
The AKS test was the first deterministic, proven, general, polynomial-time test. However, to the best of my knowledge, its best implementation turns out to be slower than other tests unless the input is ridiculously large.
回答2:
For a given integer, the fastest primality check I know is:
- Take a list of 2 to the square root of the integer.
- Loop through the list, taking the remainder of the integer / current number
- If the remainder is zero for any number in the list, then the integer is not prime.
- If the remainder was non-zero for all numbers in the list, then the integer is prime.
It uses significantly less memory than The Sieve of Eratosthenes and is generally faster for individual numbers.
回答3:
The Sieve of Eratosthenes is a decent algorithm:
- Take the list of positive integers 2 to any given Ceiling.
- Take the next item in the list (2 in the first iteration) and remove all multiples of it (beyond the first) from the list.
- Repeat step two until you reach the given Ceiling.
- Your list is now composed purely of primes.
There is a functional limit to this algorithm in that it exchanges speed for memory. When generating very large lists of primes the memory capacity needed skyrockets.
回答4:
@akdom's question to me:
Looping would work fine on my previous suggestion, and you don't need to do any calculations to determine if a number is even; in your loop, simply skip every even number, as shown below:
//Assuming theInteger is the number to be tested for primality.
// Check if theInteger is divisible by 2. If not, run this loop.
// This loop skips all even numbers.
for( int i = 3; i < sqrt(theInteger); i + 2)
{
if( theInteger % i == 0)
{
//getting here denotes that theInteger is not prime
// somehow indicate that some number, i, divides it and break
break;
}
}
回答5:
A Rutgers grad student recently found a recurrence relation that generates primes. The difference of its successive numbers will generate either primes or 1's.
a(1) = 7
a(n) = a(n-1) + gcd(n,a(n-1)).
It makes a lot of crap that needs to be filtered out. Benoit Cloitre also has this recurrence that does a similar task:
b(1) = 1
b(n) = b(n-1) + lcm(n,b(n-1))
then the ratio of successive numbers, minus one [b(n)/b(n-1)-1] is prime. A full account of all this can be read at Recursivity.
For the sieve, you can do better by using a wheel instead of adding one each time, check out the Improved Incremental Prime Number Sieves. Here is an example of a wheel. Let's look at the numbers, 2 and 5 to ignore. Their wheel is, [2,4,2,2].
回答6:
In your algorithm using the list from 2 to the root of the integer, you can improve performance by only testing odd numbers after 2. That is, your list only needs to contain 2 and all odd numbers from 3 to the square root of the integer. This cuts the number of times you loop in half without introducing any more complexity.
回答7:
@theprise
If I were wanting to use an incrementing loop instead of an instantiated list (problems with memory for massive numbers...), what would be a good way to do that without building the list?
It doesn't seem like it would be cheaper to do a divisibility check for the given integer (X % 3) than just the check for the normal number (N % X).
回答8:
If you're wanting to find a way of generating prime numbers, this have been covered in a previous question.
来源:https://stackoverflow.com/questions/7272/of-ways-to-count-the-limitless-primes