问题
I have a large Dataframe that looks similar to this:
ID_Code Status1 Status2
0 A Done Not
1 A Done Done
2 B Not Not
3 B Not Done
4 C Not Not
5 C Not Not
6 C Done Done
What I want to do is calculate is for each of the set of duplicate ID codes, find out the percentage of Not-Not entries are present. (i.e. [# of Not-Not/# of total entries] * 100)
I'm struggling to do so using groupby and can't seem to get the right syntax to perform this.
回答1:
I may have misunderstood the question, but you appear to be referring to when values of Status1 and Status2 are both Not, correct? If that's the case, you can do something like:
df.groupby('ID_Code').apply(lambda x: (x[['Status1','Status2']] == 'Not').all(1).sum()/len(x)*100)
ID_Code
A 0.000000
B 50.000000
C 66.666667
dtype: float64
回答2:
IIUC using crosstab
pd.crosstab(df['ID_Code'],(df['Status1'].eq('Not'))&(df['Status2'].eq('Not')),normalize ='index')
Out[713]:
col_0 False True
ID_Code
A 1.000000 0.000000
B 0.500000 0.500000
C 0.333333 0.666667
#pd.crosstab(df['ID_Code'],(df['Status1'].eq('Not'))&(df['Status2'].eq('Not')),normalize ='index')[True]
回答3:
Using sum and a boolean mask:
df.filter(like='Status').eq('Not').all(1).groupby(df.ID_Code).mean().mul(100)
ID_Code
A 0.000000
B 50.000000
C 66.666667
Name: flag, dtype: float64
来源:https://stackoverflow.com/questions/52614339/pandas-for-all-set-of-duplicate-entries-in-a-particular-column-grab-some-infor