问题
I have a pandas dataframe that looks like this
ID country month revenue profit ebit
234 USA 201409 10 5 3
344 USA 201409 9 7 2
532 UK 201410 20 10 5
129 Canada 201411 15 10 5
I want to group by ID, country, month and count the IDs per month and country and sum the revenue, profit, ebit. The output for the above data would be:
country month revenue profit ebit count
USA 201409 19 12 5 2
UK 201409 20 10 5 1
Canada 201411 15 10 5 1
I have tried different variations of groupby, sum and count functions of pandas but I am unable to figure out how to apply groupby sum and count all together to give the result as shown. Please share any ideas that you might have. Thanks!
回答1:
It can be done using pivot_table this way:
>>> df1=pd.pivot_table(df, index=['country','month'],values=['revenue','profit','ebit'],aggfunc=np.sum)
>>> df1
ebit profit revenue
country month
Canada 201411 5 10 15
UK 201410 5 10 20
USA 201409 5 12 19
>>> df2=pd.pivot_table(df, index=['country','month'], values='ID',aggfunc=len).rename('count')
>>> df2
country month
Canada 201411 1
UK 201410 1
USA 201409 2
>>> pd.concat([df1,df2],axis=1)
ebit profit revenue count
country month
Canada 201411 5 10 15 1
UK 201410 5 10 20 1
USA 201409 5 12 19 2
回答2:
You can do the groupby, and then map the counts of each country to a new column.
g = df.groupby(['country', 'month'])['revenue', 'profit', 'ebit'].sum().reset_index()
g['count'] = g['country'].map(df['country'].value_counts())
g
Out[3]:
country month revenue profit ebit count
0 Canada 201411 15 10 5 1
1 UK 201410 20 10 5 1
2 USA 201409 19 12 5 2
Edit
To get the counts per country and month, you can do another groupby, and then join the two DataFrames together.
g = df.groupby(['country', 'month'])['revenue', 'profit', 'ebit'].sum()
j = df.groupby(['country', 'month']).size().to_frame('count')
pd.merge(g, j, left_index=True, right_index=True).reset_index()
Out[6]:
country month revenue profit ebit count
0 Canada 201411 15 10 5 1
1 UK 201410 20 10 5 1
2 UK 201411 10 5 2 1
3 USA 201409 19 12 5 2
I added another record for the UK with a different date - notice how there are now two UK entries in the merged DataFrame, with the appropriate counts.
来源:https://stackoverflow.com/questions/48768650/groupby-sum-and-count-on-multiple-columns-in-python