Handling categorical features using scikit-learn

£可爱£侵袭症+ 提交于 2019-12-06 06:01:25
HYRY

You should use the same DictVectorizer object which created the train dataset to transform the test_set:

from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import DictVectorizer

training_set = [
  {'p1':'A', 'p2':'T', 'p3':'G', 'p4':'C', 'p5':'T', 
   'p6':'A', 'p7':'C', 'p8':'T', 'p9':'G', 'p10':'A', 
   'mass':370.2, 'temp':70.0},
  {'p1':'A', 'p2':'C', 'p3':'G', 'p4':'T', 'p5':'A', 
   'p6':'C', 'p7':'T', 'p8':'G', 'p9':'A', 'p10':'T', 
   'mass':400.3, 'temp':67.2},
]

target = [1, 0]

vec = DictVectorizer()
train = vec.fit_transform(training_set).toarray()

clf = RandomForestClassifier(n_estimators=1000)
clf = clf.fit(train, target)


# The following part fails.
test_set =   {
  'p1':'A', 'p2':'T', 'p3':'G', 'p4':'C', 'p5':'T', 
  'p6':'A', 'p7':'C', 'p8':'T', 'p9':'G', 'p10':'A', 
  'mass':370.2, 'temp':70.0}

test = vec.transform(test_set).toarray()
print clf.predict_proba(test)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!