Using scipy gaussian kernel density estimation to calculate CDF inverse

我怕爱的太早我们不能终老 提交于 2019-12-05 19:17:56

The method integrate_box_1d can be used to compute the CDF, but it is not vectorized; you'll need to loop over points. If memory is not an issue, rewriting its source code (which is essentially just a call to special.ndtr) in vector form may speed things up.

from scipy.special import ndtr
stdev = np.sqrt(kde.covariance)[0, 0]
pde_cdf = ndtr(np.subtract.outer(x, n)).mean(axis=1)
plot(x, pde_cdf)

The plot of the inverse function would be plot(pde_cdf, x). If the goal is to compute the inverse function at a specific point, consider using the inverse of interpolating spline, interpolating the computed values of the CDF.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!