Seaborn: annotate the linear regression equation

折月煮酒 提交于 2019-12-05 18:03:46

问题


I tried fitting an OLS for Boston data set. My graph looks like below.

How to annotate the linear regression equation just above the line or somewhere in the graph? How do I print the equation in Python?

I am fairly new to this area. Exploring python as of now. If somebody can help me, it would speed up my learning curve.

Many thanks!

I tried this as well.

My problem is - how to annotate the above in the graph in equation format?


回答1:


You can use coefficients of linear fit to make a legend like in this example:

import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats

tips = sns.load_dataset("tips")

# get coeffs of linear fit
slope, intercept, r_value, p_value, std_err = stats.linregress(tips['total_bill'],tips['tip'])

# use line_kws to set line label for legend
ax = sns.regplot(x="total_bill", y="tip", data=tips, color='b', 
 line_kws={'label':"y={0:.1f}x+{1:.1f}".format(slope,intercept)})

# plot legend
ax.legend()

plt.show()

If you use more complex fitting function you can use latex notification: https://matplotlib.org/users/usetex.html



来源:https://stackoverflow.com/questions/45902739/seaborn-annotate-the-linear-regression-equation

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!