几种常见的优化函数比较:https://blog.csdn.net/w113691/article/details/82631097
1 '''
2 基于Adam识别MNIST数据集
3 '''
4 import torch
5 import torchvision
6 import torchvision.transforms as transform
7 import torch.nn
8 from torch.autograd import Variable
9
10 '''
11 神经网络层级结构:
12 卷积层Conv1,Conv2()
13 最大池化层 MaxPool2d()
14 损失函数 ReLU()
15 参数:
16 卷积神经网络的卷积层参数:------输入通道数、输出通道数、卷积核大小、卷积核移动步长和Padding的值
17 Conv2d(input_channels,output_channels,kernel_size,stride,padding);
18 最大池化层参数:------池化窗口大小、移动步长
19 MaxPool2d(kernel_size,stride)
20 方法:
21 1.torch.nn.Sequential()用作参数序列化,神经网络模块会按照传入Suquential构造器顺序依次被添加到计算图中执行
22 2.torch.nn.Linear(x,y)用作对矩阵线性变换,对于一个a*x大小的矩阵,变换后会变成a*y大小的矩阵,即矩阵的乘法
23 '''
24
25
26 class LeNet(torch.nn.Module):
27 def __init__(self):
28 super(LeNet, self).__init__()
29
30 # 卷积层1
31 self.conv1 = torch.nn.Sequential( # input_size=(1*28*28)
32 torch.nn.Conv2d(1, 6, 5, 1, 2), # padding=2保证输入输出尺寸相同
33 # 输出尺寸计算公式:Height=(Height_input-kernel_size+2*padding)/stride+1
34 # 输出尺寸=(28 - 5 + 2*2)/1 + 1 = 28
35 torch.nn.ReLU(), # input_size=(6*28*28)
36 torch.nn.MaxPool2d(kernel_size=2, stride=2), # output_size=(6*14*14)
37 # 池化层尺寸计算公式: Height=(Height_input-Height_filter)/stride+1
38 # Height = (28 - 2)/2 +1 = 14
39 )
40 # 卷积层2
41 self.conv2 = torch.nn.Sequential(
42 torch.nn.Conv2d(6, 16, 5), # 默认stride=1,padding=0; 输入矩阵 6*14*14
43 # Height = (14-5+0*2)/1 + 1 = 10
44 torch.nn.ReLU(), # input_size=(16*10*10)
45 torch.nn.MaxPool2d(2, 2) # output_size=(16*5*5)
46 # Height = (10-2)/2 + 1 = 5
47 )
48 # 全连接层1
49 self.fullConnection1 = torch.nn.Sequential(
50 torch.nn.Linear(16 * 5 * 5, 120),
51 torch.nn.ReLU()
52 )
53 # 全连接层2
54 self.fullConnection2 = torch.nn.Sequential(
55 torch.nn.Linear(120, 84),
56 torch.nn.ReLU()
57 )
58 # 全连接层3
59 self.fullConnection3 = torch.nn.Linear(84, 10)
60
61 def forward(self, x):
62 x = self.conv1(x)
63 x = self.conv2(x)
64 x = x.view(x.size()[0], -1) # 对参数进行扁平化,因为之后要进行全连接,必须降低他的channel
65 x = self.fullConnection1(x)
66 x = self.fullConnection2(x)
67 x = self.fullConnection3(x)
68 return x
69
70
71 EPOCH = 8 # 遍历总次数
72 BATCH_SIZE = 64 # 批处理尺寸
73 LEARNINGRATE = 0.001
74
75 '''
76 ------------------------------定义数据预处理方式------------------------------
77 现在需要考虑的是,计算机视觉的数据集很多是图片形式的,而PyTorch中计算的则是Tensor数据类型的变量,因此我们先要做的是数据类型的转换
78 即 图像类型---->Tensor类型
79
80 需要注意的是,有的时候我们的训练集是有限的,这个时候需要进行数据增强
81 数据增强就是将图片进行各种变换,例如放大、缩小、水平翻转、垂直反转等
82 torch.transforms()中有很多数据增强的变换类
83 '''
84 transform = transform.ToTensor()
85
86 # 定义训练数据集
87 data_train = torchvision.datasets.MNIST(
88 root='C://data/',
89 train=True,
90 download=False,
91 transform=transform
92 )
93
94 # 定义训练批处理数据
95 data_train_loader = torch.utils.data.DataLoader(
96 data_train,
97 batch_size=BATCH_SIZE,
98 shuffle=True
99 )
100
101 # 定义测试数据集
102 data_test = torchvision.datasets.MNIST(
103 root='C://data/',
104 train=True,
105 download=False,
106 transform=transform
107 )
108
109 # 定义测试批处理数据
110 data_test_loader = torch.utils.data.DataLoader(
111 data_test,
112 batch_size=BATCH_SIZE,
113 shuffle=False
114 )
115
116 # 定义损失函数Loss function和优化方式(这里采用Adam)
117 net = LeNet()
118 loss_n = torch.nn.CrossEntropyLoss() # 交叉熵损失函数
119 optimizer = torch.optim.Adam(net.parameters())
120
121 # 训练
122 for epoch in range(EPOCH):
123 sum_loss = 0.0
124 # 读取数据
125 for i, data in enumerate(data_train_loader):
126 inputs, labels = data
127 inputs, labels = Variable(inputs), Variable(labels)
128
129 # 梯度清理
130 optimizer.zero_grad()
131
132 # forward + backward
133 outputs = net(inputs) # 预测数据
134 loss = loss_n(outputs, labels) # 预测数据与实际数据做交叉熵
135 loss.backward()
136 optimizer.step() # 后向传播过后对模型进行更新
137
138 # 每100个batch打印一次平均loss
139 sum_loss += loss.item() # ???????????
140 if i % 100 == 99:
141 print('[%d,%d] loss:%.03f' % (epoch + 1, i + 1, sum_loss / 100))
142 sum_loss = 0.0 # 打印并且重置
143
144 # 每次运行一次epoch打印一次正确率
145 with torch.no_grad():
146 correct = 0
147 total = 0
148 for data in data_test_loader:
149 images, labels = data
150 images, labels = Variable(images), Variable(labels)
151 outputs = net(images)
152 # 取得分最高的那个类
153 _, predicted = torch.max(outputs.data, 1)
154 total += labels.size(0)
155 correct += (predicted == labels).sum()
156 print('第%d个epoch的识别准确率为:%d%%' % (epoch + 1, (100 * correct / total)))
157 # torch.save(net.state_dict(), '%s/net_%03d.pth' % (opt.outf, epoch + 1))
'''
基于SGD优化函数识别MNIST数据集
'''
import torch
import torchvision as tv
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
import argparse
# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定义网络结构
'''
神经网络层级结构:
卷积层Conv1,Conv2()
最大池化层 MaxPool2d()
损失函数 ReLU()
参数:
卷积神经网络的卷积层参数:------输入通道数、输出通道数、卷积核大小、卷积核移动步长和Padding的值
Conv2d(input_channels,output_channels,kernel_size,stride,padding);
最大池化层参数:------池化窗口大小、移动步长
MaxPool2d(kernel_size,stride)
方法:
1.torch.nn.Sequential()用作参数序列化,神经网络模块会按照传入Suquential构造器顺序依次被添加到计算图中执行
2.torch.nn.Linear(x,y)用作对矩阵线性变换,对于一个a*x大小的矩阵,变换后会变成a*y大小的矩阵,即矩阵的乘法
'''
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
# 卷积层1
self.conv1 = nn.Sequential( # input_size=(1*28*28)
nn.Conv2d(1, 6, 5, 1, 2), # padding=2保证输入输出尺寸相同
nn.ReLU(), # input_size=(6*28*28)
nn.MaxPool2d(kernel_size=2, stride=2), # output_size=(6*14*14)
)
# 卷积层2
self.conv2 = nn.Sequential(
nn.Conv2d(6, 16, 5),
nn.ReLU(), # input_size=(16*10*10)
nn.MaxPool2d(2, 2) # output_size=(16*5*5)
)
# 全连接层1
self.fc1 = nn.Sequential(
nn.Linear(16 * 5 * 5, 120),
nn.ReLU()
)
# 全连接层2
self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.ReLU()
)
# 全连接层3
self.fc3 = nn.Linear(84, 10)
# 定义前向传播过程,输入为x
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
# nn.Linear()的输入输出都是维度为一的值,所以要把多维度的tensor展平成一维
x = x.view(x.size()[0], -1)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
# 使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser()
parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') # 模型保存路径
parser.add_argument('--net', default='./model/net.pth', help="path to netG (to continue training)") # 模型加载路径
opt = parser.parse_args()
# 超参数设置
EPOCH = 8 # 遍历数据集次数
BATCH_SIZE = 64 # 批处理尺寸(batch_size)
LR = 0.001 # 学习率
# 定义数据预处理方式
transform = transforms.ToTensor()
# 定义训练数据集
trainset = tv.datasets.MNIST(
root='./data/',
train=True,
download=True,
transform=transform)
# 定义训练批处理数据
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=BATCH_SIZE,
shuffle=True,
)
# 定义测试数据集
testset = tv.datasets.MNIST(
root='C://data//',
train=False,
download=True,
transform=transform)
# 定义测试批处理数据
testloader = torch.utils.data.DataLoader(
testset,
batch_size=BATCH_SIZE,
shuffle=False,
)
# 定义损失函数loss function 和优化方式(采用SGD)
net = LeNet().to(device)
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数,通常用于多分类问题上
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)
# 训练
if __name__ == "__main__":
for epoch in range(EPOCH):
sum_loss = 0.0
# 数据读取
for i, data in enumerate(trainloader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# 梯度清零
optimizer.zero_grad()
# forward + backward
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 每训练100个batch打印一次平均loss
sum_loss += loss.item()
if i % 100 == 99:
print('[%d, %d] loss: %.03f'
% (epoch + 1, i + 1, sum_loss / 100))
sum_loss = 0.0
# 每跑完一次epoch测试一下准确率
with torch.no_grad():
correct = 0
total = 0
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
# 取得分最高的那个类
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('第%d个epoch的识别准确率为:%d%%' % (epoch + 1, (100 * correct / total)))
# torch.save(net.state_dict(), '%s/net_%03d.pth' % (opt.outf, epoch + 1))