Fitting ARMA model to time series indexed by time in python

元气小坏坏 提交于 2019-12-05 12:50:36

I think you need convert index to DatetimeIndex:

df.index = pd.DatetimeIndex(df.index)

Sample:

import pandas as pd
from statsmodels.tsa.arima_model import ARMA

df=pd.DataFrame({"val": pd.Series([1.1,1.7,8.4 ], 
                 index=['2015-01-15 12:10:23','2015-02-15 12:10:23','2015-03-15 12:10:23'])})
print df
                     val
2015-01-15 12:10:23  1.1
2015-02-15 12:10:23  1.7
2015-03-15 12:10:23  8.4

print df.index
Index([u'2015-01-15 12:10:23',u'2015-02-15 12:10:23',u'2015-03-15 12:10:23'], dtype='object')

df.index = pd.DatetimeIndex(df.index)
print df.index
DatetimeIndex(['2015-01-15 12:10:23', '2015-02-15 12:10:23',
               '2015-03-15 12:10:23'],
              dtype='datetime64[ns]', freq=None)

model = ARMA(df["val"], (1,0))
print model
<statsmodels.tsa.arima_model.ARMA object at 0x000000000D5247B8>
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!