HDU 6588

别来无恙 提交于 2019-12-05 12:39:18

 

求$$\sum_{i=1}^{n} \gcd(\lfloor \sqrt[3]{i} \rfloor, i)$$
题解写的很清楚,自己重新推一推。

$$\sum_{i=1}^{n} \gcd(\lfloor \sqrt[3]{i} \rfloor, i)$$

$$=\sum_{a=1}^{\lfloor\sqrt[3]{n}\rfloor}\sum_{i=1}^{n}\gcd(a, i)[\sqrt[3]{i}=a]$$

$$=\sum_{a=1}^{\lfloor\sqrt[3]{n}\rfloor}\sum_{i=a^3}^{\min\{(a+1)^3-1,n\}}\gcd(a,i)$$

$$=\sum_{i=\lfloor \sqrt[3]{n} \rfloor ^3}^{n}\gcd(\sqrt[3]{n}, i)+\sum_{a=1}^{r}\sum_{i=a^3}^{(a+1)^3-1}\gcd(a,i)$$

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!