一、简介
遗传算法是基于达尔文的生物进化论,是人工智能算法的的重要分支,主要用于解决一类求最优解问题。如旅行商(TSP)问题。
遗传算法是将状态当成染色体,状态里的每一个决策都是染色体上的一个基因。然后根据实际情况生成一个适应度函数,计算每一串染色体对环境的适应度。让适应度高的遗传到下一代,适应度低的淘汰掉,另外在实现的过程中也许会发生变异,导致一些决策改变。除此之外,遗传算法是随机性近似算法,所以当我们运用该算法时必须采取措施使其收敛到全局最优解,并且尽量提高达到最优解的概率。遗传算法除了设计适应度函数以外,还有很重要的三个部分:选择,交叉,变异。
二、遗传算法实现步骤
1.初始化阶段
初始化对象:种群规模、城市数量、运行代数、交叉概率、变异概率
初始化数据:读入数据源,将坐标转换为距离矩阵(标准化欧式距离)
初始化种群:随机生成m个路径序列,m表示种群规模
2.计算种群适应度
已知任意两个城市之间的距离,每个染色体可计算出总距离,因此可以将一个随机全排列的总距离的倒数作为适应度函数,即距离越短,适应度函数越好。
3.计算累计概率
计算初始化种群中各个个体的累积概率。
4.迭代
选择算子:赌轮选择策略挑选下一代个体。
交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉。
变异运算:在变异概率的控制下,对群体中的个体两两进行变异,即对某一个体的基因进行随机调整。
计算新的种群适应度以及个体累积概率,并更新最优解。
将新种群复制到旧种群中,准备下一代进化(迭代)。
5.输出
输出迭代过程中产生的最短路径长度以及最短路径。
三、代码实现
main.m(主函数):
%main
clear;
clc;
%%%%%%%%%%%%%%%输入参数%%%%%%%%
N=25; %%城市的个数
M=100; %%种群的个数
ITER=2000; %%迭代次数
%C_old=C;
m=2; %%适应值归一化淘汰加速指数
Pc=0.8; %%交叉概率
Pmutation=0.05; %%变异概率
%%生成城市的坐标
pos=randn(N,2);
%%生成城市之间距离矩阵
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;
D(i,j)=dis^(0.5);
D(j,i)=D(i,j);
end
end
%%生成初始群体
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);%随机排列,比如[2 4 5 6 1 3]
end
%%随机选择一个种群
R=popm(1,:);
figure(1);
scatter(pos(:,1),pos(:,2),'rx');%画出所有城市坐标
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%画出初始种群对应各城市之间的连线
axis([-3 3 -3 3]);
%%初始化种群及其适应函数
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M%计算每个染色体对应的总长度
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);%最大回路
minlen=min(len);%最小回路
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);%找到最小值的下标,赋值为rr
R=popm(rr(1,1),:);%提取该染色体,赋值为R
for i=1:N
fprintf('%d ',R(i));%把R顺序打印出来
end
fprintf('\n');
fitness=fitness/sum(fitness);
distance_min=zeros(ITER+1,1); %%各次迭代的最小的种群的路径总长
nn=M;
iter=0;
while iter<=ITER
fprintf('迭代第%d次\n',iter);
%%选择操作
p=fitness./sum(fitness);
q=cumsum(p);%累加
for i=1:(M-1)
len_1(i,1)=myLength(D,popm(i,:));
r=rand;
tmp=find(r<=q);
popm_sel(i,:)=popm(tmp(1),:);
end
[fmax,indmax]=max(fitness);%求当代最佳个体
popm_sel(M,:)=popm(indmax,:);
%%交叉操作
nnper=randperm(M);
% A=popm_sel(nnper(1),:);
% B=popm_sel(nnper(2),:);
%%
for i=1:M*Pc*0.5
A=popm_sel(nnper(i),:);
B=popm_sel(nnper(i+1),:);
[A,B]=cross(A,B);
% popm_sel(nnper(1),:)=A;
% popm_sel(nnper(2),:)=B;
popm_sel(nnper(i),:)=A;
popm_sel(nnper(i+1),:)=B;
end
%%变异操作
for i=1:M
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求适应度函数
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(iter+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
iter=iter+1;
%pause(1);
end
%end of while
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);
figure(4)
plot(distance_min);
cross.m(交叉操作函数):
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
%%W为需要交叉的位数
p=unidrnd(L-W+1);%随机产生一个交叉位置
%fprintf('p=%d ',p);%交叉位置
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end
end
exchange.m(对调函数):
function [x,y]=exchange(x,y) temp=x; x=y; y=temp; end
fit.m(适应度函数):
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end
Mutation.m(变异函数):
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);
temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
mylength.m(染色体的路程代价函数):
function len=myLength(D,p)%p是一个排列
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end
end
plot_route.m(连点画图函数):
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end
end
四、实验结果与分析
分别测试城市序列、城市个数N、种群个数M、交叉概率Pc、变异概率Pmutation等影响因素对实验结果的影响
1、不同城市序列对实验结果的影响:





分析:在本算法实现过程中,城市序列采用随机生成,当城市序列不同时,算法运行时间和最短回路距离也会不同。
2、种群个数M(其他因素不变)对实验结果的影响:
M=100,城市个数N=35,其坐标分别如下:(在后面的测试中各城市坐标均如下所示)

M=100(如图显示约迭代1100次得到最短回路距离为20.92):


M=80(如图显示约迭代1000次得到最短回路距离为23.25)


M=60(如图显示约迭代1400次得到最短回路距离为23.59)


分析:如上3组数据所示,当种群规模增大时,算法收敛到最优解的可能性越大,全局搜索能力也有所增强;另外可以看出当种群规模增大后,在解空间中搜索时,可以在相对较少的代数中找到最优解,进化代数也随着种群规模的增大而变小了。种群规模越大算法结果越精确,适应度越好。
还未写完!正在更新