源码地址:https://github.com/aitorzip/PyTorch-CycleGAN
训练的代码见于train.py,首先定义好网络,两个生成器A2B, B2A和两个判别器A, B
###### Definition of variables ###### # Networks netG_A2B = Generator(opt.input_nc, opt.output_nc) netG_B2A = Generator(opt.output_nc, opt.input_nc) netD_A = Discriminator(opt.input_nc) netD_B = Discriminator(opt.output_nc)
然后是数据
# Dataset loader
transforms_ = [ transforms.Resize(int(opt.size*1.12), Image.BICUBIC),
transforms.RandomCrop(opt.size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ]
dataloader = DataLoader(ImageDataset(opt.dataroot, transforms_=transforms_, unaligned=True),
batch_size=opt.batchSize, shuffle=True, num_workers=opt.n_cpu)
接着就可以求取损失,反传梯度,更新网络,更新网络的时候首先更新生成器,然后分别更新两个判别器
生成器:损失函数=身份损失+对抗损失+循环一致损失(更新生成器的时候,好像并没有固定判别器参数,生成器损失函数会影响判别器网络参数?)
###### Generators A2B and B2A ######
optimizer_G.zero_grad()
# Identity loss
# G_A2B(B) should equal B if real B is fed
same_B = netG_A2B(real_B)
loss_identity_B = criterion_identity(same_B, real_B)*5.0
# G_B2A(A) should equal A if real A is fed
same_A = netG_B2A(real_A)
loss_identity_A = criterion_identity(same_A, real_A)*5.0
# GAN loss
fake_B = netG_A2B(real_A)
pred_fake = netD_B(fake_B)
loss_GAN_A2B = criterion_GAN(pred_fake, target_real)
fake_A = netG_B2A(real_B)
pred_fake = netD_A(fake_A)
loss_GAN_B2A = criterion_GAN(pred_fake, target_real)
# Cycle loss
recovered_A = netG_B2A(fake_B)
loss_cycle_ABA = criterion_cycle(recovered_A, real_A)*10.0
recovered_B = netG_A2B(fake_A)
loss_cycle_BAB = criterion_cycle(recovered_B, real_B)*10.0
# Total loss
loss_G = loss_identity_A + loss_identity_B + loss_GAN_A2B + loss_GAN_B2A + loss_cycle_ABA + loss_cycle_BAB
loss_G.backward()
判别器A 损失函数= 真实样本分类损失 + 虚假样本分类损失
###### Discriminator A ######
optimizer_D_A.zero_grad()
# Real loss
pred_real = netD_A(real_A)
loss_D_real = criterion_GAN(pred_real, target_real)
# Fake loss
fake_A = fake_A_buffer.push_and_pop(fake_A)
pred_fake = netD_A(fake_A.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake)
# Total loss
loss_D_A = (loss_D_real + loss_D_fake)*0.5
loss_D_A.backward()
optimizer_D_A.step()
###################################
判别器B 损失函数= 真实样本分类损失 + 虚假样本分类损失
###### Discriminator B ######
optimizer_D_B.zero_grad()
# Real loss
pred_real = netD_B(real_B)
loss_D_real = criterion_GAN(pred_real, target_real)
# Fake loss
fake_B = fake_B_buffer.push_and_pop(fake_B)
pred_fake = netD_B(fake_B.detach())
loss_D_fake = criterion_GAN(pred_fake, target_fake)
# Total loss
loss_D_B = (loss_D_real + loss_D_fake)*0.5
loss_D_B.backward()
optimizer_D_B.step()
###################################
可以注意到,判别器损失中,虚假样本fake_A,fake_B都采用detach()操作,脱离计算图,这样判别器的损失进行反向传播不会影响生成器