Predicting values using an OLS model with statsmodels

断了今生、忘了曾经 提交于 2019-12-05 00:52:17

For statsmodels >=0.4, if I remember correctly

model.predict doesn't know about the parameters, and requires them in the call see http://statsmodels.sourceforge.net/stable/generated/statsmodels.regression.linear_model.OLS.predict.html

What should work in your case is to fit the model and then use the predict method of the results instance.

model = OLS(labels[:half], data[:half])
results = model.fit()
predictions = results.predict(data[half:])

or shorter

results = OLS(labels[:half], data[:half]).fit()
predictions = results.predict(data[half:])

http://statsmodels.sourceforge.net/stable/generated/statsmodels.regression.linear_model.RegressionResults.predict.html with missing docstring

Note: this has been changed in the development version (backwards compatible), that can take advantage of "formula" information in predict http://statsmodels.sourceforge.net/devel/generated/statsmodels.regression.linear_model.RegressionResults.predict.html

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!