Python NumPy - FFT and Inverse FFT?

跟風遠走 提交于 2019-12-04 06:19:04
>>> import numpy as np
>>> a = np.vstack([np.ones(11), np.arange(11)])

# We have two channels along axis 0, the signals are along axis 1
>>> a
array([[  1.,   1.,   1.,   1.,   1.,   1.,   1.,   1.,   1.,   1.,   1.],
       [  0.,   1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.]])
>>> np.fft.irfft(np.fft.rfft(a, axis=1), axis=1)
array([[  1.1       ,   1.1       ,   1.1       ,   1.1       ,
          1.1       ,   1.1       ,   1.1       ,   1.1       ,
          1.1       ,   1.1       ],
       [  0.55      ,   1.01836542,   2.51904294,   3.57565618,
          4.86463721,   6.05      ,   7.23536279,   8.52434382,
          9.58095706,  11.08163458]])
# irfft returns an even number along axis=1, even though a was (2, 11)

# When a is even along axis 1, we get a back after the irfft.
>>> a = np.vstack([np.ones(10), np.arange(10)])
>>> np.fft.irfft(np.fft.rfft(a, axis=1), axis=1)
array([[  1.00000000e+00,   1.00000000e+00,   1.00000000e+00,
          1.00000000e+00,   1.00000000e+00,   1.00000000e+00,
          1.00000000e+00,   1.00000000e+00,   1.00000000e+00,
          1.00000000e+00],
       [  7.10542736e-16,   1.00000000e+00,   2.00000000e+00,
          3.00000000e+00,   4.00000000e+00,   5.00000000e+00,
          6.00000000e+00,   7.00000000e+00,   8.00000000e+00,
          9.00000000e+00]])

# It seems like you signals are along axis 0, here is an example where the signals are on axis 0
>>> a = np.vstack([np.ones(10), np.arange(10)]).T
>>> a
array([[ 1.,  0.],
       [ 1.,  1.],
       [ 1.,  2.],
       [ 1.,  3.],
       [ 1.,  4.],
       [ 1.,  5.],
       [ 1.,  6.],
       [ 1.,  7.],
       [ 1.,  8.],
       [ 1.,  9.]])
>>> np.fft.irfft(np.fft.rfft(a, axis=0), axis=0)
array([[  1.00000000e+00,   7.10542736e-16],
       [  1.00000000e+00,   1.00000000e+00],
       [  1.00000000e+00,   2.00000000e+00],
       [  1.00000000e+00,   3.00000000e+00],
       [  1.00000000e+00,   4.00000000e+00],
       [  1.00000000e+00,   5.00000000e+00],
       [  1.00000000e+00,   6.00000000e+00],
       [  1.00000000e+00,   7.00000000e+00],
       [  1.00000000e+00,   8.00000000e+00],
       [  1.00000000e+00,   9.00000000e+00]])
  1. You don't appear to be applying any filter here
  2. You probably want to take the ifft of the fft (post-filtering), not of the input waveform.

Shouldn't it be more like this?

filtereddata = numpy.fft.fft(data)
# do fft stuff to filtereddata
filteredwrite = numpy.fft.ifft(filtereddata)
wavfile.write('TestFiltered.wav', rate, filteredwrite)

Two problems.

You are FFTing 2 channel data. You should only FFT 1 channel of mono data for the FFT results to make ordinary sense. If you want to process 2 channels of stereo data, you should IFFT(FFT()) each channel separately.

You are using a real fft, which throws away information, and thus makes the fft non-invertible.

If you want to invert, you will need to use an FFT which produces a complex result, and then IFFT this complex frequency domain vector back to the time domain. If you modify the frequency domain vector, make sure it stays conjugate symmetric if you want a strictly real result (minus numerical noise).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!