问题
I have two functions that are intended to contain angles between (-180,180] and (-π,π]. The intent is that given any angle from -inf to +inf it will retain the equivalent angle in the intervals specified. For example the angle for 1550° is 110°.
public double WrapBetween180(double angle)
{
return angle - 360d * Math.Round(angle / 360d, MidpointRounding.AwayFromZero);
}
public double WrapBetweenPI(double angle)
{
const double twopi = 2d * Math.PI;
return angle - twopi * Math.Round(angle / twopi, MidpointRounding.AwayFromZero);
}
which yields the following results
WrapBetween180(-180) = -180
WrapBetween180( 180) = 180
WrapBetweenPI(-Math.PI) = Math.PI
WrapBetweenPI( Math.PI) = -Math.PI
none of which is what I want. What I wanted is:
WrapBetween180(-180) = 180
WrapBetween180( 180) = 180
WrapBetweenPI(-Math.PI) = Math.PI
WrapBetweenPI( Math.PI) = Math.PI
I tryied playing around with the rounding methods, but still cannot get the desired results. The problem is pronounced because sometimes the angles I deal with are only approximately close to -π or π and I am getting discontinuities it my results.
Any suggestions on how to best implement angle wrapping functions with non-inclusive low limit and inclusive high limits?
回答1:
For the angle in degrees, if x
is between -180 and 180, then 180 - x
is between 0 and 360. What you want is equivalent to asking that 180 - x
is between 0 (inclusive), and 360 (exclusive). So, as soon as 180 - x
reaches 360, we want to add 360 to the angle. This gives us:
return angle + 360d * Math.Floor((180d - angle) / 360d);
Same thing for the angle in radians:
return angle + twopi * Math.Floor((Math.PI - angle) / twopi);
回答2:
It does not address the rounding issue, but here is how I would to what you want to do :
private static double ConvertAngle(double angle)
{
bool isNegative = angle < 0;
if (isNegative)
angle *= -1;
angle = angle % 360;
if (isNegative)
angle = -1 * angle + 360;
if (angle > 180)
angle = (angle - 360);
return angle;
}
Note: This way supposes you want "behind" to be 180 degrees, not -180 degrees.
回答3:
Isn't this a case for a modulo operation?
private double Wrap180(double value)
{
// exact rounding of corner values
if (value == 180) return 180.0;
if (value == -180) return 180.0;
// "shift" by 180 and use module, then shift back.
double wrapped = ((Math.Abs(value) + 180.0) % 360.0) - 180.0;
// handle negative values correctly
if (value < 0) return -wrapped;
return wrapped;
}
It passes this tests
Assert.AreEqual(170.0, wrap(-190.0));
Assert.AreEqual(180.0, wrap(-180.0));
Assert.AreEqual(-170.0, wrap(-170.0));
Assert.AreEqual(0.0, wrap(0.0));
Assert.AreEqual(10.0, wrap(10.0));
Assert.AreEqual(170.0, wrap(170.0));
Assert.AreEqual(180.0, wrap(180.0));
Assert.AreEqual(-170.0, wrap(190.0));
来源:https://stackoverflow.com/questions/7271527/inconsistency-with-math-round