题目描述:
题解时间:
首先考虑海拔待定点的$h$都应该是多少
很明显它们都是$0$或$1$,并且所有$0$连成一块,所有$1$连成一块
只有海拔交界线对答案有贡献,变成了最小割
但是数据范围很明显不能直接跑网络流
由于这是一个平面图,所以根据套路想到:
平面图最小割=对偶图最小环=最外一块面积分成$S$和$T$跑最短路
从左上角往右下角画一条线把外面一块分成$S$和$T$之后建图。
但是要注意这张图上同一条边两个方向权值不同。
那么建边也按照相同方向,即对应向右下方向的边的新建边为$S$->$T$方向,向左上的反之。
然后就可以跑最短路了。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
typedef long long lint;
namespace LarjaIX
{
const int N=511;
int n,id[N][N];
struct sumireko{int to,ne,w;}e[N*N*8];
int he[N*N*2],ecnt;
void addline(int f,int t,int w)
{
e[++ecnt].to=t,e[ecnt].w=w;
e[ecnt].ne=he[f],he[f]=ecnt;
}
struct shion
{
int x;lint d;
shion(){}
shion(int x,lint d):x(x),d(d){}
bool operator < (const shion &a)const{return d>a.d;}
}stmp;
priority_queue<shion>q;
lint dis[N*N*2];
bool vis[N*N*2];
void dijkstra(int sp,int ep)
{
memset(dis,0x3f,sizeof(dis));
q.push(shion(sp,dis[sp]=0));
while(!q.empty())
{
stmp=q.top(),q.pop();
int x=stmp.x;
if(vis[x]) continue;vis[x]=1;
for(int i=he[x],t=e[i].to;i;i=e[i].ne,t=e[i].to)
{
if(dis[t]>dis[x]+e[i].w)
{
dis[t]=dis[x]+e[i].w;
q.push(shion(t,dis[t]));
}
}
}
printf("%lld\n",dis[ep]);
}
int wi;
int maid()
{
#ifdef debug
freopen("sample.in","r",stdin);
freopen("debug.out","w",stdout);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++)id[i][0]=id[n+1][i]=0,id[0][i]=id[i][n+1]=n*n+1;
for(int i=1;i<=n;i++)for(int j=1;j<=n;j++) id[i][j]=(i-1)*n+j;
for(int i=0;i<=n;i++)for(int j=1;j<=n;j++)
scanf("%d",&wi),addline(id[i+1][j],id[i][j],wi);
for(int i=1;i<=n;i++)for(int j=0;j<=n;j++)
scanf("%d",&wi),addline(id[i][j],id[i][j+1],wi);
for(int i=0;i<=n;i++)for(int j=1;j<=n;j++)
scanf("%d",&wi),addline(id[i][j],id[i+1][j],wi);
for(int i=1;i<=n;i++)for(int j=0;j<=n;j++)
scanf("%d",&wi),addline(id[i][j+1],id[i][j],wi);
dijkstra(0,n*n+1);
return 0;
}
}
int main(){return LarjaIX::maid();}
