ggplot2 legend for abline and stat_smooth

孤街浪徒 提交于 2019-12-04 01:38:27

问题


I have some problems with ggplot legends, here is my first code with only the legend for corrGenes, which is fine.

gene1=c(1.041,0.699,0.602,0.602,2.585,0.602,1.000,0.602,1.230,1.176,0.699,0.477,1.322)
    BIME = c(0.477,0.477,0.301,0.477,2.398,0.301,0.602,0.301,0.602,0.699,0.602,0.477,1.176)
    corrGenes=c(0.922,0.982,0.934,0.917,0.993,0.697,0.000,0.440,0.859,0.788,0.912,0.687,0.894)

DF=data.frame(gene1,BIME,corrGenes)

plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
  geom_point(aes(colour=corrGenes),size=5)+
  ylab("BIME normalized counts (log10(RPKM))")+
  xlab("gene1 normalized counts (log10(RPKM))")

When I add abline and smooth, I get the correct plot with :

plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
  geom_point(aes(colour=corrGenes),size=5)+
  geom_abline(intercept=0, slope=1)+
  stat_smooth(method = "lm",se=FALSE)+
  ylab("BIME normalized counts (log10(RPKM))")+
  xlab("gene1 normalized counts (log10(RPKM))")

but no way to get the legend for them, I tried and many other combinations:

plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
  geom_point(aes(colour=corrGenes),size=5)+
  geom_abline(aes(colour="best"),intercept=0, slope=1)+
  stat_smooth(aes(colour="data"),method = "lm",se=FALSE)+
  scale_colour_manual(name="Fit", values=c("data"="blue", "best"="black"))+
  ylab("BIME normalized counts (log10(RPKM))")+
  xlab("gene1 normalized counts (log10(RPKM))")

If anyone has an idea to solve this tiny but very annoying problem, it would be very helpfull!


回答1:


Finally, I found anther way using a trick. First, I've computed the linear regression and convert the results to a data frame which I add my best fit (Intercept = 0 and slope =1), then I added a column for type of data (data or best).

modele = lm(BIME ~ gene1, data=DF)
coefs = data.frame(intercept=coef(modele)[1],slope=coef(modele)[2])
coefs= rbind(coefs,list(0,1))
regression=as.factor(c('data','best'))
coefs=cbind(coefs,regression)

then I plotted it with a unique geom_abline command and moving the DF from ggplot() to geom_point() and used the linetype parameter to differenciate the two lines :

plot = ggplot()+
  geom_point(data=pointSameStrandDF,aes(x=gene1,y=BIME,colour=corrGenes),size=5)+
  geom_abline(data=coefs, aes(intercept=intercept,slope=slope,linetype=regression), show_guide=TRUE)+
  ylab("BIME normalized counts (log10(RPKM))")+
  xlab("gene1 normalized counts (log10(RPKM))")

There is maybe a way to use colors for those 2 lines, but I can't find out how?

Thanks for your help guys!




回答2:


The show_guide=TRUE argument should display the legends for both geom_abline and stat_smooth. Try running the below code.

plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
geom_point(aes(colour=corrGenes),size=5)+
geom_abline(aes(colour="best"),intercept=0, slope=1, show_guide=TRUE)+
stat_smooth(aes(colour="data"),method = "lm",se=FALSE, show_guide=TRUE)+
scale_colour_manual(name="Fit", values=c("data"="blue", "best"="black"))+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")



回答3:


Not sure if this is the best solution, but I was able to tell ggplot to have two scales, one for the colours (your points), the other one for the fill colour. Which fill colour you are probably asking? The one I added in the aes for the two lines:

plot = ggplot(data=DF,aes(x=gene1,y=BIME)) + 
  geom_point(size=5, aes(colour=corrGenes)) +
  geom_abline(aes(fill="black"),intercept=0, slope=1) + 
  stat_smooth(aes(fill="blue"), method = "lm",se=FALSE) +
  scale_fill_manual(name='My Lines', values=c("black", "blue"))+
  ylab("BIME normalized counts (log10(RPKM))")+
  xlab("gene1 normalized counts (log10(RPKM))")



来源:https://stackoverflow.com/questions/29844161/ggplot2-legend-for-abline-and-stat-smooth

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!